Books
[1] S. Koziel and A. Bekasiewicz, “Multiobjective design of antennas using surrogate models,” World Scientific, 2016.
[2] S. Koziel and L. Leifsson, “Simulationdriven design by knowledgebased response correction techniques,” Springer, 2016.
[3] S. Koziel, L. Leifsson, and X.S. Yang (Eds.), “Simulationdriven modeling and optimization,” Springer, 2016.
[4] M.S. Obaidat, S. Koziel, J. Kacprzyk, L. Leifsson, and J. Filipe (Eds.), “Simulation and Modeling Methodologies, Technologies and Applications, Advances in Intelligent Systems and Computing Series,” Springer, 2014.
[5] S. Koziel, L. Leifsson, and X.S. Yang (Eds.), “Solving computationally expensive engineering problems: methods and applications,” Springer, 2014.
[6] L. Leifsson and S. Koziel, “Simulationdriven aerodynamic design using variablefidelity models,” Imperial College Press, 2015.
[7] S. Koziel and S. Ogurtsov, “Antenna design by simulationdriven optimization. Surrogatebased approach,” Springer, 2014.
[8] S. Koziel and L. Leifsson (Eds.), “SurrogateBased Modeling and Optimization. Applications in Engineering,” Springer, 2013.
[9] S. Koziel, X.S. Yang, and Q.J. Zhang (Eds.), “Simulationdriven design optimization and modeling for microwave engineering”, Imperial College Press, 2013.
[10] S. Koziel and X.S. Yang (Eds.), “Computational optimization, methods and algorithms,” Series: Studies in Computational Intelligence, vol. 356, Springer, 2011.
[11] X.S. Yang and S. Koziel (Eds.), “Computational optimization and applications in engineering and industry,” Series: Studies in Computational Intelligence, vol. 359, Springer, 2011.
[12] S. Koziel and S. Szczepanski, “General approach to continuoustime OTAC filters – theory and design,” Wydawnictwa Komunikacji i Lacznosci, Warsaw, 2011.
Journal Articles
[1] S. Koziel and A. Bekasiewicz, “Reducedcost surrogate modeling of input characteristics and design optimization of dualband antennas using response features,” Int. J. RF & Microwave CAE, 2017.
[2] S. Koziel and A. Bekasiewicz, “Recent advances in rapid multiobjective optimization of expensive simulation models in microwave and antenna engineering by Pareto front exploration,” Int. J. RF Microwave CAE, 2017.
[3] A. Bekasiewicz and S. Koziel, “Miniaturized uniplanar tripleband slot dipole antenna with folded radiator,” Microwave Opt. Tech. Lett., 2017.
[4] D. de Villiers and S. Koziel, “Fast multiobjective optimization of pencil beam reflector antenna radiation pattern responses using kriging,” IET Microwaves Ant. Prop., 2017.
[5] S. Koziel, and A. Bekasiewicz, “Rapid design closure of microwave components by means of featurebased optimization and adjoint sensitivities,” Int. J. RF Microwave CAE, 2017.
[6] M.A. Haq and S. Koziel, “A novel miniaturized uwb monopole with fivesection steppedimpedance feed line,” Microwave Opt. Tech. Lett., 2017.
[7] S. Koziel and A. Bekasiewicz, “Computationally efficient twoobjective optimization of compact microwave couplers through corrected domain patching,” Metrology and Measurement Systems, 2016.
[8] S. Koziel, A. Bekasiewicz, and Q.S. Cheng, “Response features for lowcost statistical analysis and toleranceaware design of antennas,” Int. J. Numerical Modelling, 2017.
[9] S. Koziel, and A. Bekasiewicz, “Reliable lowcost surrogate modeling and design optimization of antennas using implicit space mapping with substrate segmentation,” IET Microwaves Ant. Prop., 2017.
[10] P. Kurgan and S. Koziel, “Surrogateassisted EMdriven miniaturization of wideband microwave couplers by means of cosimulation lowfidelity models,” Int. J. RF Microwave CAE, 2017.
[11] A. Thelen, L. Leifsson, A. Sharma, and S. Koziel, “RANSbased optimization of dualrotor wind turbines,” Engineering Computations, 2017.
[12] S. Koziel and A. Bekasiewicz, “Multiobjective design optimization of antenna structures using sequential domain patching with automated patch size determination,” Eng. Opt., available online, 2017.
[13] P. Kurgan and S. Koziel, “Fast optimization of quasiperiodic slowwave structures with applications to broadband microwave coupler miniaturization,” Int. J. Numerical Modeling, available online, 2017.
[14] M.A. Haq and S. Koziel, „Design optimization and tradeoffs of miniaturized wideband antenna for internet of things applications,” Metrology and Measurement Systems, vol. 24, no. 3, pp. 463471, 2017.
[15] S. Koziel and A. Bekasiewicz, “Comprehensive comparison of compact UWB antenna performance by means of multiobjective optimization,” IEEE Trans. Ant. Prop., vol. 65, no. 7, pp. 34273436, 2017.
[16] S. Koziel, “Objective relaxation algorithm for reliable simulationdriven size reduction of antenna structure,” IEEE Ant. Wireless Prop. Lett., vol. 16, no. 1, pp. 19491952, 2017.
[17] A. Bekasiewicz and S. Koziel, “Reliable assessment of topological modifications in UWB antennas by means of multiobjective optimization,” Microwave Optical Tech. Lett., vol. 59, no. 7, pp. 14931499, 2017.
[18] S. Koziel and A. Bekasiewicz, “Conceptual design and automated optimization of a novel compact UWB MIMO slot antenna,” IET Microwaves Ant. Prop., vol. 11, no. 8, pp. 11621168, 2017.
[19] S. Koziel and A. Bekasiewicz, “Expedited simulationdriven design optimization of UWB antennas by means of response features,” Int. J. RF and Microwave CAE, vol. 27, no. 6, 2017.
[20] S. Koziel, A. Bekasiewicz, “On reducedcost designoriented constrained surrogate modeling of antenna structures,” IEEE Ant. Wireless Prop. Lett., vol. 16, pp. 16181621, 2017.
[21] S. Ogurtsov and S. Koziel, “Systematic approach to sidelobe reduction in linear antenna arrays through corporatefeedcontrolled excitation,” IET Microwaves Ant. Prop., vol. 11, no. 6, pp. 779786, 2017.
[22] S. Koziel and A. Bekasiewicz, “Computationally feasible narrowband antenna modeling using response features,” Int. J. RF & Microwave CAE, vol. 27, no. 4, 2017.
[23] A. Anand, L. Leifsson, and S. Koziel, “Design strategies for multiobjective optimization of aerodynamic surfaces,” Eng. Comp., vol. 34, no. 5, pp. 17241753, 2017.
[24] B. Liu, S. Koziel, and N. Ali, “SADEAII: a generalized method for efficient global optimization of antenna design,” J. Comp. Design Eng., vol. 4, no. 2, pp. 8697, 2017.
[25] S. Koziel, “Editorial for the special issue on advances in simulationdriven modeling and optimization of microwave/RF circuits,” Int. J. Numerical Modeling, vol. 30, no. 34, pp. 12, 2017.
[26] L. Leifsson and S. Koziel, “Adaptive response prediction for aerodynamic shape optimization,” Engineering Computations, vol. 34, no. 5, pp. 14851500, 2017.
[27] S. Koziel and A. Bekasiewicz, “Computationallyefficient surrogateassisted dimension scaling of compact dualband couplers,” IET Microwaves, Antennas Prop., vol. 11, no. 4, pp. 465470, 2017.
[28] S. Koziel and A. Bekasiewicz, “Patch size setup and performance/cost tradeoffs in multiobjective EMdriven antenna optimization using sequential domain patching,” Eng. Comp., vol. 34, no. 4, pp. 10701081, 2017.
[29] S. Koziel, “Lowcost datadriven surrogate modeling of antenna structures by constrained sampling,” IEEE Antennas Wireless Prop. Lett., vol. 16, pp. 461464, 2017.
[30] A. Bekasiewicz, and S. Koziel, “Surrogateassisted design optimization of photonic directional couplers,” Int. J. Numerical Modeling, vol. 30, no. 34, pp. 2017.
[31] S. Koziel and A. Bekasiewicz, “On deterministic procedures for lowcost multiobjective design optimization of miniaturized impedance matching transformers,” Eng. Comp., vol. 34, no. 2, pp. 403419, 2017.
[32] S. Koziel, A. Bekasiewicz, “Pareto ranking bisection algorithm for expedited multiobjective optimization of antenna structures,” IEEE Ant. Wireless Prop. Lett., vol. 16, pp. 14881491, 2016.
[33] S. Koziel and A. Bekasiewicz, “Lowfidelity model considerations for EMdriven design of antenna structures,” J. Electromagnetic Waves App., vol. 30, no. 18, pp. 24442458, 2016.
[34] T. Muszynski and S. Koziel, “Parametric study of fluid flow and heat transfer over louvered fins of air heat pump evaporator,” Archives of Thermodynamics, vol. 37, no. 3, pp. 4562, 2016.
[35] S. Armaković, S.J. Armaković, and S. Koziel, “Optoelectronic properties of curved carbon systems,” Carbon, vol. 111, pp. 371379, 2016.
[36] S. Koziel and A. Bekasiewicz, “Rapid dimension scaling for notch frequency redesign of UWB bandnotch antennas,” J. Electromagnetic Waves Appl., vol. 30, no. 17, pp. 22802292, 2016.
[37] S. Ulaganathan, S. Koziel, A. Bekasiewicz, I. Couckuyt, E. Laermans, and T. Dhaene, „Datadriven model based design and analysis of antenna structures,” IET Microwaves, Ant. Prop., vol. 10, no. 13, pp. 14281434, 2016.
[38] P. Kurgan and S. Koziel, “Surrogatebased multiobjective optimization of compact microwave couplers,” Journal of Electromagnetic Waves Appl., vol. 30, no. 15, pp. 20672075, 2016.
[39] A. Bekasiewicz and S. Koziel, “Structure and EMdriven design of novel compact UWB slot antenna,” IET Microwaves Antennas Prop., vol. 11, no. 2, pp. 219223, 2016.
[40] A. Bekasiewicz and S. Koziel, “A novel structure and design optimization of compact splineparameterized UWB slot antenna,” Metrology & Measurement Systems, vol. 23, no. 4, pp. 637643, 2016.
[41] S. Koziel and A. Bekasiewicz, “On rapid redesign of UWB antennas with respect to substrate permittivity,” Metrology & Measurement Systems, vol. 23, no. 4, pp. 513520, 2016.
[42] A. Bekasiewicz and S. Koziel, “Precise control of reflection response in bandwidthenhanced planar antennas,” Int. J. RF Microwave CAE, vo. 26, no. 8, pp. 653659, 2016.
[43] S. Koziel and A. Bekasiewicz, “Rapid microwave design optimization in frequency domain using adaptive response scaling,” IEEE Trans. Microwave Theory Tech., vol. 64, no. 9, pp. 27492757, 2016.
[44] S. Koziel and A. Bekasiewicz, “EMsimulationdriven design of compact UWB MIMO antenna,” IET Microwaves, Ant. Prop., vol. 10, no. 15, pp. 17211724, 2016.
[45] S. Koziel, and A. Bekasiewicz, “Rapid simulationdriven multiobjective design optimization of decomposable compact microwave passives,” IEEE Trans. Microwave Theory Tech., vol. 64, no. 8, pp. 24542461, 2016.
[46] S. Koziel and A. Bekasiewicz, “Lowcost surrogateassisted statistical analysis of miniaturized microstrip couplers,” J. Electromagnetic Waves Appl., vol. 30, no. 10, pp. 13451353, 2016.
[47] S. Koziel and J.P. Jacobs, “Responsecorrectionbased fault detection in small linear microstrip patch arrays using magnitudeonly farfield pattern samples,” Int. J. RF Microwave CAE, vol. 10, no. 8, pp. 683689, 2016.
[48] A. Bekasiewicz, S. Koziel, and W. Zieniutycz, „A structure and design optimization of novel compact microscrip dualband ratrace coupler with enhanced bandwidth,” Microwave Opt. Tech. Lett., vol. 58, no. 10, pp. 22872291, 2016.
[49] P. Kurgan and S. Koziel, “Design of highperformance hybrid branchline couplers for wideband and spacelimited applications,” IET Microwaves Antennas Prop., vol. 10, no. 12, pp. 13391344, 2016.
[50] S. Koziel and A. Bekasiewicz, “Multiobjective optimization of expensive electromagnetic simulation models,” Applied Soft Computing, vol. 47, pp. 332342, 2016.
[51] S. Koziel and A. Bekasiewicz, “Rapid simulationdriven design of miniaturized dualband microwave couplers by means of adaptive response scaling,” IET Microwaves, Antennas Prop., vol. 10, no. 11, pp. 11351140, 2016.
[52] A. Bekasiewicz and S. Koziel, “Response features and circuit decomposition for accelerated EMdriven design of compact impedance matching transformers,” vol. 58, no. 9, pp. 21302133, Microwave Optical Tech. Lett., 2016.
[53] A. Bekasiewicz and S. Koziel, “Accelerated geometry optimization of compact impedance matching transformers using decomposition and adjoint sensitivities,” Int. J. Numerical Modelling, vol. 29, no. 6, pp. 11401148, 2016.
[54] S. Koziel and A. Bekasiewicz, “Surrogate modeling for expedited twoobjective geometry scaling of miniaturized microwave passives,” Int. J. RF & Microwave CAE, vol. 26, no. 6, pp. 531537, 2016.
[55] S. Koziel and A. Bekasiewicz, “Rapid multiobjective antenna design using pointbypoint Pareto set identification and local surrogate models,” IEEE Trans. Antennas Prop., vol. 64, no. 6, pp. 25512556, 2016.
[56] S. Koziel, Y. Tesfahunegn, and L. Leifsson, “Expedited constrained multiobjective aerodynamic shape optimization by means of physicsbased surrogates,” Applied Mathematical Modeling, vol. 24, no. 1516, pp. 72047215, 2016.
[57] S. Koziel, Y. Tesfahunegn, and L. Leifsson, “Variablefidelity CFD models and cokriging for expedited multiobjective aerodynamic design optimization,” Eng. Comp., vol. 33, no. 8, pp. 23202338, 2016.
[58] S. Koziel and A. Bekasiewicz, “Computationallyefficient design closure of miniaturized impedance matching transformers using response features,” Int. J. RF & Microwave CAE, vol. 26, no. 5, pp. 396401, 2016.
[59] S. Koziel and A. Bekasiewicz, “EMsimulationdriven design optimization of compact microwave structures using multifidelity simulation models and adjoint sensitivities,” Int. J. RF & Microwave CAE, vol. 26, no. 5, pp. 442448, 2016.
[60] S. Koziel and A. Bekasiewicz, “Accurate designoriented simulationdriven modeling of miniaturized microwave structures,” Int. J. Numerical Modelling, vol. 29, no. 6, pp. 10281035, 2016.
[61] A. Bekasiewicz and S. Koziel, “A novel structure and design optimization of compact UWB slot antenna,” Electronics Lett., vol. 52, no. 9, pp. 681681, 2016.
[62] S. Ogurtsov, and S. Koziel, “Approach to axial ratio improvement for circular polarized microstrip patch antennas excited via twoinputs,” IET Microwaves Ant. Prop., vol. 10, no. 7, pp. 770776, 2016.
[63] S. Koziel, S. Ogurtsov, and A. Bekasiewicz, “Suppressing sidelobes of linear phased array of microstrip antennas with simulationbased optimization,” Metrology & Measurement Systems, vol. 23, no. 2, pp. 193203, 2016.
[64] A. Bekasiewicz and S. Koziel, “A compact UWB monopole antenna for internet of things applications,” Electronics Lett., vol. 52, no. 7, pp. 492494, 2016.
[65] S. Ogurtsov and S. Koziel, “Enhancement of circular polarization quality of singlepatch twoinput microstrip antennas,” J. Electromagnetic Waves Appl., vol. 30, no. 6, pp. 767779, 2016.
[66] S. Koziel, and A. Bekasiewicz, “Rapid design optimization of antennas using variablefidelity EM models and adjoint sensitivities,” Eng. Comp., vol. 33, no. 7, pp. 20072018, 2016.
[67] S. Koziel, and A. Bekasiewicz, “Fast multiobjective surrogateassisted design of multiparameter antenna structures through rotational design space reduction,” IET Microwaves Antennas Prop., vol. 10, no. 6, pp. 624630, 2016.
[68] S. Koziel, and A. Bekasiewicz, “Fast EMdriven optimization using variablefidelity EM models and adjoint sensitivities,” IEEE Microwave Wireless Comp. Lett., vol. 26, no. 2, pp. 8082, 2016.
[69] S. Koziel, and A. Bekasiewicz, “Scalability of surrogateassisted multiobjective optimization of antenna structures exploiting variablefidelity EMsimulation models,” Engineering Optimization, vol. 48, no. 10, pp. 17781792, 2016.
[70] B. Liu, S. Koziel, and Q. Zhang, “A multifidelity surrogatemodelassisted evolutionary algorithm for computationally expensive optimization problems,” J. Comp. Sc., vol. 12, pp. 2837, 2016.
[71] S. Koziel, and A. Bekasiewicz, “Lowcost multiobjective optimization and experimental validation of UWB MIMO antenna,” Eng. Comp., vol. 33, no. 4, pp. 12461268, 2016.
[72] S. Koziel, and A. Bekasiewicz, “Inverse surrogate modeling for lowcost geometry scaling of microwave and antenna structures,” Eng. Comp., vol. 33, no. 4, pp. 10951116, 2016.
[73] S. Koziel and A. Bekasiewicz, “Multiobjective antenna design by means of sequential domain patching,” IEEE Antennas Wireless Prop. Lett., vol. 15, pp. 10891092, 2016.
[74] S. Koziel and A. Bekasiewicz, “Simulationdriven design of compact ultrawideband antenna structures,” Eng. Comp., vol. 33, no. 4, pp. 10511069, 2016.
[75] L. Leifsson, S. Koziel, Y. Tesfahunegn, and A. Bekasiewicz, “Fast multiobjective aerodynamic optimization using spacemappingcorrected multifidelity models and kriging interpolation,” in S. Koziel, L. Leifsson, X.S. Yang (Eds.) Simulationdriven modeling and optimization, Springer, pp. 5574, 2016.
[76] C. Olivieri, F. De Paulis, A. Orlandi, and S. Koziel, “Performance optimization of EBGbased common model filters for signal integrity applications,” in S. Koziel, L. Leifsson, X.S. Yang (Eds.) Simulationdriven modeling and optimization, Springer, pp. 111134, 2016.
[77] J.P. Jacobs, and S. Koziel, “Twostage Gaussian process modeling of microwave structures for design optimization,” in S. Koziel, L. Leifsson, X.S. Yang (Eds.) Simulationdriven modeling and optimization, Springer, pp. 161184, 2016.
[78] A. Bekasiewicz, S. Koziel, W. Zieniutycz, and L. Leifsson, “Expedited simulationdriven multiobjective design optimization of quasiisotropic dielectric resonator antenna,” in S. Koziel, L. Leifsson, X.S. Yang (Eds.) Simulationdriven modeling and optimization, Springer, pp. 207232, 2016.
[79] S. Koziel, and A. Bekasiewicz, “Fast simulationdriven design optimization of UWB bandnotch antennas,” submitted, IEEE Antennas Wireless Prop. Lett., vol. 15, pp. 926929, 2016.
[80] L. Leifsson, S. Koziel, and Y.A. Tesfhunegn, “Multiobjective aerodynamic optimization by variablefidelity models and response surface surrogates,” AIAA Journal, vol. 54, no. 2, pp. 531541, 2016.
[81] S. Koziel, and A. Bekasiewicz, “A structure and simulationdriven design of compact CPWfed UWB antenna,” IEEE Antennas Wireless Prop. Lett., vol. 15, pp. 750753, 2016.
[82] S. Koziel, A. Bekasiewicz, and L. Leifsson, „Rapid EMdriven antenna dimension scaling through inverse modeling,” IEEE Antennas Wireless Prop. Lett., vol. 15, pp. 714717, 2016.
[83] P. Kurgan, and S. Koziel, “Fast surrogateassisted simulationdriven design of compact microwave hybrid couplers,” Eng. Optimization, vol. 48, no. 7, pp. 11091120, 2016.
[84] A. Bekasiewicz, and S. Koziel, “Costefficient design optimization of compact patch antennas with improved bandwidth,” IEEE Antennas Wireless Prop. Lett., vol. 15, pp. 270273, 2016.
[85] S. Koziel, and A. Bekasiewicz, “Strategies for computationally feasible multiobjective simulationdriven design of compact RF/microwave components,” Eng. Comp., vol. 33, no. 1, pp. 184201, 2016.
[86] S. Koziel, A. Bekasiewicz, and P. Kurgan, „Rapid design and size reduction of microwave couplers using variablefidelity EMdriven optimization,” Int. J. RF and Microwave CAE, vol. 26, no. 1, pp. 2735, 2015.
[87] S. Koziel, P. Kurgan, and A. Bekasiewicz, “Computationally efficient design optimization of compact microwave and antenna structures,” in J. Laessig, K. Kersting, and K. Morik (Eds.) Computational Sustainability, Springer, pp. 171199, 2016.
[88] S. Koziel, A. Bekasiewicz, P. Kurgan, and J.W. Bandler „Rapid multiobjective design optimization of compact microwave couplers by means of physicsbased surrogates,” vol. 10, no. 5, pp. 479486, IET Microwaves, Antennas, Prop., 2015.
[89] S. Koziel and J.W. Bandler, “Reliable microwave modeling by means of variablefidelity response features,” IEEE Trans. Microwave Theory Tech., vol. 63, no. 12, pp. 42474254, 2015.
[90] S. Koziel, and A. Bekasiewicz, “Expedited geometry scaling of compact microwave passives by means of inverse surrogate modeling,” IEEE Trans. Microwave Theory Tech., vol. 63, no. 12, pp. 40194026, 2015.
[91] S. Koziel, and L. Leifsson, “Efficient knowledgebased optimization of expensive computational models using adaptive response correction,” J. Comp. Science, vol. 11, pp. 111, 2015.
[92] S. Koziel, Q.S. Cheng, and J.W. Bandler, “Featurebased surrogates for lowcost microwave modeling and optimization,” IET Microwaves, Antennas, Prop., vol. 9, no. 15, pp. 17061712, 2015.
[93] A.P. Duffy, G. Zhang, S. Koziel, and L. Wang, “Objective selection of minimum acceptable mesh refinement for EMC simulations,” vol. 57, no. 5, pp. 12661269, IEEE Trans. Electromagnetic Compatibility, 2015.
[94] S. Koziel and A. Bekasiewicz, “Fast simulationdriven featurebased design optimization of compact dualband microstrip branchline coupler,” Int. J. RF and Microwave CAE, vol. 26, no. 1, pp. 1320, 2015.
[95] H. Shah, S. Hosder, S. Koziel, Y. Tesfahunegn, and L. Leifsson, „Multifidelity robust aerodynamic design optimization under mixed uncertainty,” Aerospace Science and Technology, vol. 45, pp. 1729, 2015.
[96] S. Koziel, and A. Bekasiewicz, “Fast EMdriven size reduction of antenna structures by means of adjoint sensitivities and trust regions,” vol. 14, pp. 16811684, IEEE Antennas Wireless Prop. Lett., 2015.
[97] A. Bekasiewicz and S. Koziel, “A novel miniaturized dualband branchline coupler,” Electr. Lett., vol. 51, no. 10, pp. 769771, 2015.
[98] A. Bekasiewicz, and S. Koziel, “Structure and computationallyefficient simulationdriven design of compact UWB monopole antenna,” IEEE Antennas and Wireless Prop. Lett., vol. 14, pp. 12821285, 2015.
[99] S. Koziel, A. Bekasiewicz, and P. Kurgan, “Rapid multiobjective simulationdriven design of compact microwave circuits,” IEEE Microwave Wireless Comp. Letters, vol. 25, no. 5, pp. 277279, 2015.
[100] L. Leifsson, E. Hermannsson, and S. Koziel, “Optimal shape design of multielement trawldoors using local surrogate models,” vol. 10, pp. 5562, J. Comp. Science, 2015.
[101] L. Leifsson and S. Koziel, “Aerodynamic shape optimization by variablefidelity computational fluid dynamics models: a review of recent progress” vol. 10, pp. 4554, J. Comp. Science, 2015.
[102] M. Zmuda, S. Szczepanski, and S. Koziel, „Analysis of positioning error and its impact on high frequency properties of differential signal coupler,” Bulletin of the Polish Academy of Sciences, Technical Sciences, vol. 63, no. 2, pp. 549553, 2015.
[103] S. Koziel and A. Bekasiewicz, “Recent developments in simulationdriven multiobjective design of antennas,” Bulletin of the Polish Academy of Sciences, Technical Sciences, vol. 63, no. 3, pp. 781789, 2015.
[104] S. Koziel and P. Kurgan, “Rapid design of miniaturized branchline couplers through concurrent cell optimization and surrogateassisted finetuning,” vol. 9, no. 9, pp. 957963, IET Microwaves Ant. Prop., 2015.
[105] L. Leifsson, and S. Koziel, “Simulationdriven design of lowspeed wind tunnel contraction,” Journal of Computational Science, vol. 7, pp. 112, 2015.
[106] S. Koziel and J.W. Bandler, “Rapid yield estimation and optimization of microwave structures exploiting featurebased statistical analysis,” IEEE Trans. Microwave Theory Tech., vol. 63, no., 1, pp. 107114, 2015.
[107] S. Koziel and S. Ogurtsov, “Fast surrogateassisted simulationdriven optimisation of adddrop resonators for integrated photonic circuits,” IET Microwaves, Antennas Prop., vol. 9, no. 7, pp. 672675, 2015.
[108] S. Koziel and A. Bekasiewicz, “Fast multiobjective optimization of narrowband antennas using RSA models and design space reduction,” IEEE Antennas and Wireless Prop. Lett., vol. 14, pp. 450453, 2015.
[109] A. Bekasiewicz, S. Koziel, and B. Pankiewicz, “Accelerated simulationdriven design optimization of compact couplers by means of twolevel space mapping,” IET Microwaves Antennas Prop., vol. 9, no. 7, pp. 618626, 2015.
[110] S. Koziel, S. Ogurtsov, W. Zieniutycz, and A. Bekasiewicz, “Design of a planar UWB dipole antenna with an integrated balun using surrogatebased optimization,” IEEE Antennas and Wireless Prop. Lett., vol. 14, pp. 366369, 2015.
[111] S. Koziel and S. Ogurtsov, “Fast simulationdriven optimization of planar microstrip antenna arrays using surrogate superposition models,” Int. J. RF and Microwave CAE, vol. 25, no. 5, pp. 371381, 2015.
[112] S. Koziel, “Fast simulationdriven antenna design using responsefeature surrogates,” Int. J. RF & Microwave CAE, vol. 25, no. 5, pp. 394402, 2015.
[113] S. Szczepanski, B. Pankiewicz, S. Koziel, and M. Wojcikowski, “Multipleoutput OTA with linearizing bulkdriven activeerror feedback loop for continuoustime filter applications,” Int. J. Circuit Theory Appl., vol. 43, no. 11, pp. 16711686, 2015.
[114] R. Mansoor, S. Koziel, H. Sasse, and A. Duffy, “Crosstalk suppression bandwidth optimization of a vertically coupled ring resonator add/drop filter,” IET Optoelectronics, vol. 9, no. 2, pp. 3036, 2015.
[115] A. Bekasiewicz, and S. Koziel, “Efficient multifidelity design optimization of microwave filters using adjoint sensitivity,” Int. J. RF and Microwave CAE, vol. 25, no. 2, pp. 178183, 2015.
[116] S. Koziel, P. Kurgan, and B. Pankiewicz, “Costefficient design methodology for compact ratrace couplers,” Int. J. RF and Microwave CAE, vol. 25, no. 3, pp. 236242, 2015.
[117] L. Leifsson and S. Koziel, “Variableresolution shape optimization: lowfidelity model selection and scalability,” Int. J. Mathematical Modeling and Numerical Optimization, vol. 6, no. 1, pp. 121, 2015.
[118] L. Leifsson, and S. Koziel, “Surrogate modeling and optimization using shapepreserving response prediction: a review,” Engineering Optimization, vol. 48, no. 3, pp. 476496, 2014.
[119] S. Koziel, and S. Ogurtsov, “Simulationbased design of microstrip linear antenna arrays using fast radiation response surrogates,” IEEE Antennas and Wireless Prop. Lett., vol. 14, pp. 759762, 2014.
[120] S. Koziel, S. Ogurtsov, and L. Leifsson, “Decomposition and space mapping for reducedcost modeling of waveguide filters,” in M.S. Obaidat, S. Koziel, J. Kacprzyk, L. Leifsson, and J. Filipe (Eds.) , Simulation and Modeling Methodologies, Technologies and Applications, Advances in Intelligent Systems and Computing Series, pp. 199210, Springer, 2014.
[121] O. Glubokov, S. Koziel, and L. Leifsson, “Efficient design of inline Eplane waveguide extracted pole filters through enhanced equivalent circuits and space mapping,” in M.S. Obaidat, S. Koziel, J. Kacprzyk, L. Leifsson, and J. Filipe (Eds.), Simulation and Modeling Methodologies, Technologies and Applications, Advances in Intelligent Systems and Computing Series, Springer, pp. 185198, 2014.
[122] J.P. Jacobs, and S. Koziel, “Reducedcost microwave filter modeling using a twostage Gaussian process regression approach,” Int. J. RF and Microwave CAE, vol. 25, no. 5, pp. 453462, 2014.
[123] S. Koziel and S. Ogurtsov, “Rapid design of microstrip antenna arrays by means of surrogatebased optimization,” IET Microwaves Ant. Prop., vol. 9, no. 5, pp. 463471, 2014.
[124] S. Koziel, A. Bekasiewicz, I. Couckuyt, and T. Dhaene, “Efficient multiobjective simulationdriven antenna design using cokriging,” IEEE Trans. Antennas Prop., vol. 62, no. 11, pp. 59005905, 2014.
[125] S. Koziel and L. Leifsson, “Shapepreserving response prediction for surrogate modeling and engineering design optimization,” in S. Koziel, L. Leifsson, and X.S. Yang (Eds.) Solving Computationally Extensive Engineering Problems: Methods and Applications, Springer, pp. 2552, 2014.
[126] S. Koziel, A. Bekasiewicz, and P. Kurgan “Nested space mapping technique for design and optimization of complex microwave structures with enhanced functionality,” in S. Koziel, L. Leifsson, and X.S. Yang (Eds.) Solving Computationally Extensive Engineering Problems: Methods and Applications, Springer, pp. 5386, 2014.
[127] L. Leifsson, S. Koziel, and P. Kurgan “Automated lowfidelity model setup for surrogatebased aerodynamic optimization,” in S. Koziel, L. Leifsson, and X.S. Yang (Eds.) Solving Computationally Extensive Engineering Problems: Methods and Applications, Springer, pp. 87112, 2014.
[128] A. Bekasiewicz, S. Koziel, and W. Zieniutycz “Design space reduction for expedited multiobjective design optimization of antennas in highlydimensional spaces,” in S. Koziel, L. Leifsson, and X.S. Yang (Eds.) Solving Computationally Extensive Engineering Problems: Methods and Applications, Springer, pp. 113148, 2014.
[129] S. Koziel, and S. Ogurtsov “Numerically efficient approach to simulation driven design of planar microstrip antenna arrays by means of surrogatebased optimization,” in S. Koziel, L. Leifsson, and X.S. Yang (Eds.) Solving Computationally Extensive Engineering Problems: Methods and Applications, Springer, pp. 149170, 2014.
[130] L. Leifsson and S. Koziel, “Inverse airfoil design using variableresolution models and shapepreserving response prediction,” Aerospace Science and Technology, vol. 39, pp. 513522, 2014.
[131] M. Zmuda, S. Szczepanski, S. Koziel, and S. Graczyk, “The contactless method of chiptochip highspeed data transmission monitoring,” Bulletin of the Polish Academy of Sciences, Technical Sciences, vol. 62, no. 1, pp. 6168, 2014.
[132] S. Koziel, S. Ogurtsov, W. Zieniutycz, and L. Sorokosz, “Simulationdriven design of microstrip antenna subarrays,” IEEE Trans. Antennas Prop., vol. 62, no. 7, 35843591, 2014.
[133] S. Koziel, A. Bekasiewicz, and W. Zieniutycz, “Expedited EMdriven multiobjective antenna design in highlydimensional parameter spaces,” IEEE Antennas and Wireless Prop. Lett., vol. 13, pp. 631634, 2014.
[134] S. Koziel, S. Ogurtsov, W. Zieniutycz, and L. Sorokosz, “Expedited design of microstrip antenna subarrays using surrogatebased optimization,” IEEE Antennas and Wireless Prop. Lett., vol. 13, pp. 635638, 2014.
[135] S. Koziel, A. Bekasiewicz, and P. Kurgan, “Rapid EMdriven design of compact RF circuits by means of nested space mapping,” IEEE Microwave and Wireless Comp. Lett., vol. 24, no. 6, pp. 364366, 2014.
[136] X.S. Yang, M. Karamanoglu, T. Luan, and S. Koziel, “Mathematical modelling and parameter optimization of pulsating heat pipes,” J. Comp. Science, vol. 5, pp. 119125, 2014.
[137] S. Koziel, S. Ogurtsov, Q.S. Cheng, and J.W. Bandler, “Rapid EMbased microwave design optimization exploiting shapepreserving response prediction and adjoint sensitivities,” IET Microwaves, Ant. Prop., vol., 8, no. 10, pp. 775781, 2014.
[138] S. Koziel, S. Ogurtsov, L. Leifsson, “On lowfidelity model selection for antenna design using variableresolution EM simulations,” M.S. Obaidat, J. Filipe, J. Kacprzyk, N. Pina (Eds.) Simulation and Modeling Methodologies, Technologies and Applications, Advances in Intelligent and Soft Computing Series, pp. 263276, 2014.
[139] S. Koziel, L. Leifsson, S. Ogurtsov, “Efficient design optimization of microwave structures using adjoint sensitivity,” M.S. Obaidat, J. Filipe, J. Kacprzyk, N. Pina (Eds.) Simulation and Modeling Methodologies, Technologies and Applications, Advances in Intelligent and Soft Computing Series, pp. 333346, 2014.
[140] L. Leifsson, S. Koziel, and E. Jonsson, “Wing aerodynamic shape optimization by space mapping,” M.S. Obaidat, J. Filipe, J. Kacprzyk, N. Pina (Eds.) Simulation and Modeling Methodologies, Technologies and Applications, Advances in Intelligent and Soft Computing Series, pp. 319332, 2014.
[141] L. Leifsson, S. Koziel, and E. Jonsson, “Hydrodynamic shape optimization of fishing gear trawldoors,” M.S. Obaidat, J. Filipe, J. Kacprzyk, N. Pina (Eds.) Simulation and Modeling Methodologies, Technologies and Applications, Advances in Intelligent and Soft Computing Series, pp. 305318, 2014.
[142] S. Koziel, Q.S. Cheng, and J.W. Bandler, “Fast EM modeling exploiting shapepreserving response prediction and space mapping,” IEEE Trans. Microwave Theory Tech., vol. 62, no. 3, pp. 399407, 2014.
[143] J.P. Jacobs and S. Koziel, “Twostage framework for efficient Gaussian process modeling of antenna input characteristics,” IEEE Trans. Antennas Prop., vol. 62, no. 2, pp. 706713, 2014.
[144] S. Koziel and S. Ogurtsov, “Multiobjective design of antennas using variablefidelity simulations and surrogate models,” IEEE Trans. Antennas Prop., vol. 61, no. 12, pp. 59315939, 2013.
[145] S. Koziel and S. Ogurtsov, “Antenna design using variablefidelity electromagnetic simulations,” Int. J. Applied Electromagnetics and Mechanics, vol. 43, pp. 169183, 2013.
[146] S. Koziel, S. Ogurtsov, J.W. Bandler, and Q.S. Cheng, “Reliable space mapping optimization integrated with EMbased adjoint sensitivities,” IEEE Trans. Microwave Theory Tech., vol. 61, no. 10, pp. 34933502, 2013.
[147] S. Koziel and S. Ogurtsov, “Rapid optimization of omnidirectional antennas using adaptively adjusted design specifications and kriging surrogates,” IET Microwaves, Ant. Prop., vol. 7, no. 15, pp. 11941200, 2013.
[148] S. Koziel and S. Ogurtsov, “Decomposition, response surface approximations and space mapping for EMdriven design of microwave filters,” Microwave Opt. Tech. Lett., vol. 55, no. 9, pp. 21372141, 2013.
[149] S. Koziel and L. Leifsson, “Multipoint response correction for reducedcost EMsimulationdriven design of antenna structures,” Microwave Opt. Tech. Lett., vol. 55, no. 9, pp. 20702074, 2013.
[150] S. Koziel and S. Ogurtsov, “Multilevel microwave design optimization with automated model fidelity adjustment,” to appear, Int. J. RF and Microwave CAE, 2013.
[151] M. Prieß, J. Piwonski, S. Koziel, A. Oschlies, and T. Slawig, “Accelerated parameter identification in 3D marine biogeochemical model using surrogatebased optimization,” vol. 68, pp. 2236, Ocean Modelling, 2013.
[152] M. Prieß, S. Koziel, and T. Slawig, “Marine ecosystem model calibration with real data using enhanced surrogatebased optimization,” J. Comp. Science, vol. 4, pp. 423437, 2013.
[153] S. Koziel and S. Ogurtsov, “Design optimization of antennas using electromagnetic simulations and adaptive response correction technique,” IET Microwaves, Antennas Prop., vol. 8, no. 3, pp. 180185, 2014.
[154] L. Leifsson, S. Koziel, and S. Ogurtsov, “Hydrodynamic shape optimization of axisymmetric bodies using multifidelity modeling,” in N. Pina, J. Kacprzyk, and J. Filipe (Eds.) Simulation and Modeling Methodologies, Technologies and Applications, Advances in Intelligent and Soft Computing Series, pp. 209224, Springer, 2013.
[155] M. Priess, S. Koziel, and T. Slawig, “Marine ecosystem model calibration through enhanced surrogatebased optimization,” in N. Pina, J. Kacprzyk, and J. Filipe (Eds.) Simulation and Modeling Methodologies, Technologies and Applications, Advances in Intelligent and Soft Computing Series, pp. 193208, Springer, 2013.
[156] S. Koziel, L. Leifsson, I. Couckuyt, and T. Dhaene, “Reliable reduced cost modeling and design optimization of microwave filters using cokriging,” Int. J. Numerical Modelling: Electronic Devices and Fields, vol. 26, no. 5, pp. 493505, 2013.
[157] J.P. Jacobs and S. Koziel, “Costeffective global surrogate modeling of planar microwave filters using multifidelity Bayesian support vector regression,” Int. J. RF & Microwave CAE, vol. 24, no. 1, pp. 1117, 2014.
[158] S. Koziel, S. Ogurtsov, I. Couckuyt, and T. Dhaene, “Variablefidelity electromagnetic simulations and cokriging for accurate modeling of antennas,” IEEE Trans. Antennas Prop., vol. 61, no. 3, pp. 13011308, 2013.
[159] S. Koziel, L. Leifsson, and S. Ogurtsov, “Reliable EMdriven microwave design optimization using manifold mapping and adjoint sensitivity,” Microwave and Optical Technology Letters, vol. 55, no. 4, pp. 809813, 2013.
[160] S. Koziel, L. Leifsson, I. Couckuyt, and T. Dhaene, “Robust variablefidelity optimization of microwave filters using cokriging and trust regions,” Microwave and Optical Technology Letters, vol. 55, no. 4, pp. 765769, 2013.
[161] S. Koziel, S. Ogurtsov, “Model management for costefficient surrogatebased optimization of antennas using variablefidelity electromagnetic simulations,” IET Microwaves Ant. Prop., vol. 6, no. 15, pp. 16431650, 2012.
[162] S. Koziel, S. Ogurtsov, I. Couckuyt, and T. Dhaene, “Costefficient EMsimulationdriven antenna design using cokriging,” IET Microwaves, Antennas Prop., vol. 6, no. 14, pp. 15211528, 2012.
[163] S. Koziel, J.W. Bandler, and Q.S. Cheng, “Reducedcost microwave component modeling using spacemappingenhanced EMbased kriging surrogates,” Int. J. Numerical Modeling, vol. 26, no. 3, pp. 275286, 2013.
[164] J.P. Jacobs, S. Koziel, and S. Ogurtsov, “Computationally efficient multifidelity Bayesian support vector regression modeling of planar antenna input characteristics,” IEEE Trans. Antennas Prop., vol. 61, no. 2, pp. 980984, 2013.
[165] M. Zmuda, S. Szczepanski, and S. Koziel, „A new coupler concept for contactless highspeed data transmission monitoring,” IEEE Trans. Instrumentation & Measurement, vol. 99, no. 10, pp. 17, 2012.
[166] S. Koziel, S. Ogurtsov, “Computationalbudgetdriven automated microwave design optimization using variablefidelity electromagnetic simulations,” Int. J. RF & Microwave CAE, vol. 23, no. 3, pp. 349356, 2013.
[167] S. Koziel and L. Leifsson, “Generalized shapepreserving response prediction for accurate modeling of microwave structures,” IET Microwaves, Ant. Prop., vol. 6, No. 12, pp. 13321339, 2012.
[168] S. Koziel and L. Leifsson, “Surrogatebased aerodynamic shape optimization by variableresolution models,” AIAA Journal, vol. 51, no. 1, pp. 94106, 2013.
[169] S. Koziel and S. Ogurtsov, “Reducedcost design optimization of antenna structures using adjoint sensitivity,” vol. 54, no. 11, pp. 25942597, Microwave and Optical Technology Letters, 2012.
[170] S. Koziel, S. Ogurtsov, and S. Szczepanski, “Local response surface approximations and variablefidelity electromagnetic simulations for computationally efficient microwave design optimization,” IET Microwaves, Antennas and Prop., vol. 6, no. 9, pp. 10561062, 2012.
[171] X.S. Yang and S. Koziel, “Introduction to optimization and gradientbased methods,” S. Koziel, X.S. Yang, Q.J. Zhang (Eds.) SimulationDriven Design Optimization and Modeling for Microwave Engineering, Imperial College Press, pp. 118, 2013.
[172] X.S. Yang and S. Koziel, “Derivativefree methods and metaheuristics,” S. Koziel, X.S. Yang, Q.J. Zhang (Eds.) SimulationDriven Design Optimization and Modeling for Microwave Engineering, Imperial College Press, pp. 1940, 2012.
[173] S. Koziel, L. Leifsson, and X.S. Yang, “Surrogatebased optimization,” S. Koziel, X.S. Yang, Q.J. Zhang (Eds.) SimulationDriven Design Optimization and Modeling for Microwave Engineering, Imperial College Press, pp. 4180, 2012.
[174] S. Koziel, S. Ogurtsov, Q.S. Cheng, and J.W. Bandler, “Space mapping,” S. Koziel, X.S. Yang, Q.J. Zhang (Eds.) SimulationDriven Design Optimization and Modeling for Microwave Engineering, Imperial College Press, pp. 81106, 2012.
[175] Q.S. Cheng, J.W. Bandler, and S. Koziel, “Tuning space mapping,” S. Koziel, X.S. Yang, Q.J. Zhang (Eds.) SimulationDriven Design Optimization and Modeling for Microwave Engineering, Imperial College Press, pp. 107128, 2012.
[176] S. Koziel, S. Ogurtsov, and L. Leifsson, “Robust design using knowledgebased response correction and adaptive design specifications,” S. Koziel, X.S. Yang, Q.J. Zhang (Eds.) SimulationDriven Design Optimization and Modeling for Microwave Engineering, Imperial College Press, pp. 129158, 2012.
[177] S. Koziel and S. Ogurtsov, “Simulationdriven design of broadband antennas using surrogatebased optimization,” S. Koziel, X.S. Yang, Q.J. Zhang (Eds.) SimulationDriven Design Optimization and Modeling for Microwave Engineering, Imperial College Press, pp. 159190, 2013.
[178] M. Zmuda, S. Szczepanski, and S. Koziel, “A design of novel microstrip directional coupler for differential signal decoupling,” IET Microwaves, Antennas and Prop., vol. 6, no. 7, pp. 721728, 2012.
[179] I. Couckuyt, S. Koziel, and T. Dhaene, “Surrogate modeling of microwave structures using kriging, cokriging and space mapping,” Int. J. Numerical Modelling: Electronic Devices and Fields, vol. 26, no. 1, pp. 6473, 2013.
[180] Q.S. Cheng, J.W. Bandler, and S. Koziel, “Tuning space mapping: the state of the art,” vol. 22, no. 6, pp. 639651, Int. J. RF and Microwave CAE, 2012.
[181] S. Koziel, “Adaptive design specifications and coarselydiscretized EM models for rapid optimization of microwave structures,” Applied Computational Electromagnetics Society Journal, vol. 26, no. 12, pp. 10071015, 2011.
[182] S. Koziel, L. Leifsson, and X.S. Yang, “Advances in simulationdriven optimization and modeling,” Journal of Computational Methods in Science and Engineering, vol. 12, no. 1, pp. 14, 2012.
[183] S. Koziel and L. Leifsson, “Simulationdriven design using surrogatebased optimization and variablefidelity computational fluid dynamic models,” Journal of Computational Methods in Science and Engineering, vol. 12, no. 1, pp. 7598, 2012.
[184] S. Koziel, S. Ogurtsov, and S. Szczepanski, “Rapid antenna design optimization using shapepreserving response prediction,” Bulletin of the Polish Academy of Sciences. Technical Sciences, vol. 60, no. 1, pp. 143149, 2012.
[185] M. Prieß, S. Koziel, and T. Slawig, “Parameter identification in climate models using surrogatebased optimization,” Journal of Computational Methods in Science and Engineering, vol. 12, no. 1, pp. 4762, 2012.
[186] M.B. Yelten, T. Zhu, S. Koziel, P.D. Franzon, and M.B. Steer, “Demystifying surrogate modeling for circuits and systems,” IEEE Circuits and Systems Magazine, vol. 12, no. 1, pp. 4563, 2012.
[187] W. Jendernalik, S. Szczepanski, and S. Koziel, “Highly linear CMOS triode transconductor for VHF applications,” IET Circuits, Devices & Systems, vol. 6, no. 1, pp. 918, 2012.
[188] S. Koziel, F. Mosler, S. Reitzinger, and P. Thoma, “Robust microwave design optimization using adjoint sensitivity and trust regions,” Int. J. RF and Microwave CAE, vol. 22, no. 1, pp. 1019, 2012.
[189] S. Koziel, “Derivativefree microwave design optimization using shapepreserving response prediction and space mapping,” IET Science, Measurement & Technology, vol. 6, no. 1, pp. 1320, 2012.
[190] S. Koziel and L. Leifsson, “Response correction techniques for surrogatebased design optimization of microwave structures,” Int. J. RF and Microwave CAE, vol. 22, no. 2, pp. 211223, 2012.
[191] S. Koziel, S. Ogurtsov, and M.H. Bakr, “Antenna modeling using spacemapping corrected Cauchyapproximation surrogates,” Microwave and Optical Technology Letters, vol. 54, no. 1, pp. 3740, 2012.
[192] S. Koziel and S. Ogurtsov “Fast simulationdriven design of microwave structures using improved variablefidelity optimization technique,” Engineering Optimization, vol. 44, no. 8, pp. 10071019, 2012.
[193] S. Koziel, “Accurate lowcost microwave component models using shapepreserving response prediction,” Int. J. Numerical Modelling: Electronic Devices and Fields, vol. 25, no. 2, pp. 152162, 2012.
[194] S. Koziel and J.W. Bandler, “Accurate modeling of microwave devices using krigingcorrected space mapping surrogates,” International Journal of Numerical Modelling, vol. 25, no. 1, pp. 114, 2012.
[195] M. Priess, S. Koziel, and T. Slawig, “Surrogatebased optimization of climate model parameters using response correction,” J. Comp. Science., vol. 2, no. 4, pp. 335344, 2011.
[196] S. Koziel and L. Leifsson, “Simulationbased optimization techniques for computationally expensive engineering design problems,” Int. J. Math. Modeling and Numerical Optimization, vol. 3, no. 12, pp. 14, 2011.
[197] S. Koziel, S. Ogurtsov, and L. Leifsson, “Variablefidelity simulationdriven design optimization of microwave structures,” Int. J. Math. Modeling and Numerical Optimization, vol. 3, no. 12, pp. 6481, 2011.
[198] S. Koziel and S. Ogurtsov “Design of broadband transitions for substrate integrated circuits,” Microwave and Optical Technology Letters, vol. 53, no. 12, pp. 29432945, 2011.
[199] S. Koziel and M.H. Bakr, “Design optimization of microwave structures using loworder local Cauchyapproximation surrogates,” ACES Journal, vol. 26, no. 6, pp. 519529, 2011.
[200] S. Szczepanski and S. Koziel, “Continuoustime analog OTAC filters – selected topics in analysis and synthesis” (in Polish), in W. Janke (Ed.) Wybrane Zagadnienia Wspolczesnej Elektroniki (Selected Topics in Contemporary Electronics), Wyd. Politechniki Koszalinskiej, pp. 193222, 2011.
[201] S. Koziel and L. Leifsson, “Lowcost parameter extraction and surrogate optimization for space mapping design using EMbased coarse models,” Progress in Electromagnetic Research B, vol. 31, pp. 117137, 2011.
[202] S. Koziel, J.W. Bandler, and Q.S. Cheng, “Tuning space mapping design framework exploiting reduced EM models”, IET Microwaves, Antennas & Propagation, vol. 5, no. 10, pp. 12191226, 2011.
[203] S. Koziel and S. Ogurtsov, “Rapid design optimization of antennas using space mapping and response surface approximation models,” Int. J. RF & Microwave CAE, vol. 21, no. 6, pp. 611621, 2011.
[204] X.S. Yang and S. Koziel, “Computational optimization: an overview,” S. Koziel and X.S. Yang (Eds.) Computational Optimization, Methods and Algorithms, Series: Studies in Computational Intelligence, SpringerVerlag, pp. 112, 2011.
[205] S. Koziel, D. EcheverríaCiaurri, and L. Leifsson, “Surrogatebased methods,” in S. Koziel and X.S. Yang (Eds.) Computational Optimization, Methods and Algorithms, Series: Studies in Computational Intelligence, SpringerVerlag, pp. 3360, 2011.
[206] O. Kramer, D. EcheverríaCiaurri, and S. Koziel, “Derivativefree optimization,” S. Koziel and X.S. Yang (Eds.) Computational Optimization, Methods and Algorithms, Series: Studies in Computational Intelligence, SpringerVerlag, pp. 6184, 2011.
[207] S. Koziel and S. Ogurtsov, “Simulationdriven design in microwave engineering: methods,” to appear, S. Koziel and X.S. Yang (Eds.) Computational Optimization, Methods and Algorithms, Series: Studies in Computational Intelligence, SpringerVerlag, pp. 153178, 2011.
[208] L. Leifsson and S. Koziel, “Variablefidelity aerodynamic shape optimization,” S. Koziel and X.S. Yang (Eds.) Computational Optimization, Methods and Algorithms, Series: Studies in Computational Intelligence, SpringerVerlag, pp. 179210, 2011.
[209] S. Koziel and S. Ogurtsov, “Simulationdriven design in microwave engineering: application case studies,” X.S. Yang and S. Koziel (Eds.) Computational Optimization and Applications in Engineering and Industry, Series: Studies in Computational Intelligence, SpringerVerlag, pp. 5798, 2011.
[210] S. Koziel and L. Leifsson, “Airfoil shape optimization using variablefidelity modeling and shapepreserving response prediction,” X.S. Yang and S. Koziel (Eds.) Computational Optimization and Applications in Engineering and Industry, Series: Studies in Computational Intelligence, SpringerVerlag, pp. 99124, 2011.
[211] S. Koziel and S. Szczepanski, “Accurate modeling of microwave structures using shapepreserving response prediction,” IET Microwaves, Antennas & Propagation, vol. 5, no. 9, pp. 11161122, 2011.
[212] S. Koziel, “Reliable design optimization of microwave structures using multipointresponsecorrection space mapping and trust regions,” Int. J. RF and Microwave CAE, vol. 21, no. 5, pp. 534542, 2011.
[213] S. Koziel and J.W. Bandler, “Fast design optimization of microwave structures using cosimulationbased tuning space mapping” Applied Computational Electromagnetics Society Journal, vol. 26, no. 8, pp. 631639, 2011.
[214] S. Koziel, J.W. Bandler, and Q.S. Cheng, “Constrained parameter extraction for microwave design optimization using implicit space mapping”, IET Microwaves, Antennas & Propagation, vol. 5, no. 10, pp. 11561163, 2011.
[215] S. Koziel and J.W. Bandler, “Accurate modeling of microwave devices using krigingcorrected space mapping surrogates,” International Journal of Numerical Modelling, vol. 25, no. 1, pp. 114, 2012.
[216] S. Koziel, “Role of constraints in surrogatebased design optimization of microwave structures” IET Microwaves, Antennas & Propagation, vol. 5, no. 5, pp. 588595, 2011.
[217] S. Koziel and L. Leifsson, “Computational optimization, modeling and simulation,” Int. J. Math. Modeling and Numerical Optimization, vol. 2, no. 2, pp. 109111, 2011.
[218] S. Koziel and L. Leifsson, “Variablefidelity aerodynamic shape optimization of singleelement airfoils at highlift conditions,” Int. J. Math. Modeling and Numerical Optimization, vol. 2, no. 2, pp. 194212, 2011.
[219] S. Koziel, S. Ogurtsov, and M.H. Bakr, “Computationally efficient design optimization of wideband planar antennas using Cauchy approximation and space mapping,” Microwave and Optical Technology Letters, vol. 53, no. 3, pp. 618622, 2011.
[220] S. Koziel and J.W. Bandler, “Spacemapping modeling of microwave devices using multifidelity electromagnetic simulations,” IET Microwaves, Antennas & Propagation, vol. 5, no. 3, pp. 324333, 2011.
[221] S. Koziel, “Fast microwave design optimization using shapepreserving response prediction and coarsediscretization EM models” IET Microwaves, Antennas & Propagation, vol. 5, no. 2, pp. 175183, 2011.
[222] S. Koziel, Q.S. Cheng, and J.W. Bandler, “Rapid design optimization of microwave structures through automated tuning space mapping,” IET Microwaves, Antennas & Propagation, vol. 4, no. 11, pp. 18921902, 2011.
[223] S. Koziel and J.W. Bandler “Modeling and optimization of microwave structures using quick space mapping with variable weight coefficients,” International Journal of Numerical Modelling, vol. 24, no. 2, pp. 175193, 2011.
[224] S. Koziel “Robust optimization of microwave structures using cosimulationbased surrogate models,” Microwave and Optical Technology Letters, vol. 53, no. 1, pp. 130135, 2011.
[225] S. Koziel, “Shapepreserving response prediction for microwave design optimization,” IEEE Trans. Microwave Theory and Tech., vol. 58, no. 11, pp. 28292837, 2010.
[226] S. Koziel, “Adaptively adjusted design specifications for efficient optimization of microwave structures,” Progress in Electromagnetic Research B (PIER B), vol. 21, pp. 219234, 2010.
[227] S. Koziel and D. Echeverría Ciaurri, “Reliable simulationdriven design optimization of microwave structures using manifold mapping,” Progress in Electromagnetic Research B (PIER B), vol. 26, pp. 361382, 2010.
[228] S. Koziel, J.W. Bandler, and Q.S. Cheng, “Robust trustregion spacemapping algorithms for microwave design optimization,” IEEE Trans. Microwave Theory and Tech., vol. 58, no. 8, pp. 21662174, 2010.
[229] S. Koziel and J.W. Bandler, “Editorial—advances in design optimization of microwave/RF circuits and systems,” Int. J. RF and Microwave ComputerAided Eng., vol. 20, no. 5, pp. 473474, 2010.
[230] S. Koziel, “Computationally efficient multifidelity multigrid design optimization of microwave structures,” Applied Computational Electromagnetics Society Journal, vol. 25, no. 7, pp. 578586, 2010.
[231] R. Piotrowski, S. Szczepanski, and S. Koziel, ‘FPGAbased implementation of real time optical flow algorithm and its applications for digital image stabilization,” Int. J. Smart Sensing and Intelligent Systems, vol. 3, no. 2, pp. 253272, 2010.
[232] L. Leifsson and S. Koziel, “Multifidelity design optimization of transonic airfoils using physicsbased surrogate modeling and shapepreserving response prediction,” J. Comp. Science, vol. 1, no. 1, pp. 98106, 2010.
[233] S. Koziel and S. Ogurtsov, “Computationally efficient simulationdriven design of a printed 2.45 GHz Yagi antenna,” Microwave and Optical Technology Letters, vol. 52, no. 8, pp. 18071810, 2010.
[234] Q.S. Cheng, J.W. Bandler, S. Koziel, M.H. Bakr, and S. Ogurtsov, “The state of the art of microwave CAD: EMbased optimization and modeling,” Int. J. RF and Microwave ComputerAided Eng., vol. 20, no. 5, pp. 475491, 2010.
[235] Q.S. Cheng, J.C. Rautio, J.W. Bandler, and S. Koziel, “Progress in simulatorbased tuning—the art of tuning space mapping,” IEEE Microwave Magazine, vol. 11, no. 4, pp. 96110, 2010.
[236] M. Ravan, R.K. Amineh, S. Koziel, N.K. Nikolova, and J.P. Reilly, “Sizing of 3D arbitrary defects using magnetic flux leakage measurements,” IEEE Trans. Magnetics, vol. 46, no. 4, pp. 10241033, 2010.
[237] S. Koziel and J.W. Bandler, “Recent advances in spacemappingbased modeling of microwave devices,” International Journal of Numerical Modelling, vol. 23, no. 6, pp. 425446, 2010.
[238] S. Szczepanski, B. Pankiewicz, and S. Koziel, “Programmable feedforward linearized CMOS OTA for fully‑differential continuoustime filter design,” Int. J. Circuit Theory Appl., vol. 38, no. 9, pp. 885899, 2010.
[239] S. Koziel, S. Ogurtsov, and M.H. Bakr, “Variablefidelity design optimization of microwave devices using multidimensional Cauchy approximation and coarsely discretized electromagnetic models,” Progress in Electromagnetic Research B (PIER B), vol. 21, pp. 126, 2010.
[240] S. Koziel and J.W. Bandler, “Coarse models for efficient space mapping optimization of microwave structures,” IET Microwaves, Antennas & Propagation, vol. 4, no. 4, pp. 453465, 2010.
[241] S. Koziel and J.W. Bandler, “Space mapping algorithm with improved convergence properties for microwave design optimization,” Int. J. RF and Microwave ComputerAided Eng., vol. 20, no. 2, pp. 230240, Mar. 2010.
[242] R. Piotrowski, S. Szczepanski, and S. Koziel, “Hardware implementation of digital image stabilization using optical flow and FPGA technology,” Elektronika – konstrukcje, technologie, zastosowania, vol. 50, no. 2, pp. 132135, 2010.
[243] S. Koziel, Q.S. Cheng and J.W. Bandler, “Implicit space mapping with adaptive selection of preassigned parameters,” IET Microwaves, Antennas & Propagation, vol. 4, no. 3, pp. 361373, Mar. 2010.
[244] Q.S. Cheng, J.W. Bandler, and S. Koziel, “Space mapping design framework exploiting tuning elements,” IEEE Trans. Microwave Theory and Tech., vol. 58, no. 1, pp. 136144, 2010.
[245] S. Koziel, J.W. Bandler, “Knowledgebased variablefidelity optimization of expensive objective functions through space mapping,” in Computational Intelligence in Expensive Optimization Problems, Studies in Evolutionary Learning and Optimization, pp. 85109, SpringerVerlag, 2010.
[246] M. Ravan, R.K. Amineh, S. Koziel, N.K. Nikolova, and J.P. Reilly, “Sizing of multiple cracks using magnetic flux leakage measurements,” IET Journal of Science, Measurement & Technology, vol. 4, no. 1, pp. 111, 2010.
[247] S. Koziel, “Multifidelity optimization of microwave structures using response surface approximation and space mapping,” Applied Computational Electromagnetics Society Journal, vol. 24, no. 6, pp. 601608, 2009.
[248] S. Koziel and J.W. Bandler, “Distributed fine model evaluation for rapid space mapping optimization of microwave structures,” IET Microwaves, Antennas & Propagation, vol. 3, no. 5, pp. 798807, 2009.
[249] S. Koziel, J. Meng, J.W. Bandler, M.H. Bakr, and Q.S. Cheng, “Accelerated microwave design optimization with tuning space mapping,” IEEE Trans. Microwave Theory and Tech., vol. 57, no. 2, pp. 383394, 2009.
[250] S. Koziel, J.W. Bandler, and K. Madsen, ”Space mapping with adaptive response correction for microwave design optimization,” IEEE Trans. Microwave Theory Tech., vol. 57, no. 2, pp. 478486, 2009.
[251] S. Koziel and J.W. Bandler, “Space mapping optimization and modeling of microwave devices with MEFiSTo,” P. Russer, U. Siart (eds.), Time Domain Methods in Electrodynamics, Series: Springer Series in Physics, vol. 121, pp. 393407, SpringerVerlag Berlin Heidelberg 2008.
[252] S. Koziel, Q.S. Cheng, and J.W. Bandler, “Space mapping,” IEEE Microwave Magazine, vol. 9, no. 6, pp. 105122, Dec. 2008.
[253] R.K. Amineh, S. Koziel, N.K. Nikolova, J.W. Bandler, and J.P. Reilly, “A space mapping methodology for defect characterization from magnetic flux leakage measurements,” IEEE Trans. Magn., vol. 44, no. 8, pp. 20582065, 2008.
[254] S. Koziel, “Analysis of OTAC filters with weakly nonlinear transconductors,” International Journal of Circuit Theory and Applications, vol. 36, no. 7, pp. 789811, 2008.
[255] J.W. Bandler, S. Koziel, and K. Madsen, “Editorial—surrogate modeling and space mapping for engineering optimization,” Optimization and Engineering, vol. 9, no. 4, pp. 307310, 2008.
[256] S. Koziel, J.W. Bandler, and K. Madsen, ”Quality assessment of coarse models and surrogates for space mapping optimization,” Optimization and Engineering, vol. 9, no. 4, pp. 375391, 2008.
[257] S. Koziel and J.W. Bandler, “Modeling of microwave devices with space mapping and radial basis functions,” International Journal of Numerical Modelling, vol. 21, no. 3, pp. 187203, 2008.
[258] Q.S. Cheng, J.W. Bandler, and S. Koziel, “An accurate microstrip hairpin filter design using implicit space mapping,” Microwave Magazine, vol. 9, no. 1, pp. 7988, Feb. 2008.
[259] S. Koziel and J.W. Bandler, “Space mapping with multiple coarse models for optimization of microwave components,” IEEE Microwave and Wireless Components Letters, vol. 18, pp. 13, 2008.
[260] S. Koziel and J.W. Bandler, “A spacemapping approach to microwave device modeling exploiting fuzzy systems”, IEEE Trans. Microwave Theory and Tech., vol. 55, no. 12, pp. 25392547, Dec. 2007.
[261] S. Koziel and J.W. Bandler, “Interpolated coarse models for microwave design optimization with spacemapping”, IEEE Trans. Microwave Theory and Tech., vol. 55, no. 8, pp. 17391746, Aug. 2007.
[262] S. Koziel, A. Ramachandran, S. Szczepanski and E. SanchezSinencio, “A general framework for dynamic range, noise and linearity optimization of continuous‑time OTA‑C filters,” Int. J. Circuit Theory and Appl., vol. 35, no. 4, pp. 405425, July/Aug. 2007.
[263] J. Zhu, J.W. Bandler, N.K. Nikolova and S. Koziel, “Antenna optimization through space mapping,” IEEE Transactions on Antennas and Propagation, vol. 55, no. 3, pp. 651658, March 2007.
[264] S. Koziel and J.W. Bandler, “Spacemapping optimization with adaptive surrogate model,” IEEE Trans. Microwave Theory Tech., vol. 55, no. 3, pp. 541547, March 2007.
[265] S. Koziel, J.W. Bandler and K. Madsen, “Theoretical justification of spacemappingbased modeling utilizing a data base and ondemand parameter extraction,” IEEE Trans. Microwave Theory Tech., vol. 54, no. 12, pp. 43164322, Dec. 2006.
[266] S. Koziel, J.W. Bandler and K. Madsen, “A space mapping framework for engineering optimization: theory and implementation,” IEEE Trans. Microwave Theory Tech., vol. 54, no. 10, pp. 37213730, 2006.
[267] S. Koziel, J.W. Bandler and K. Madsen, ”Spacemapping based interpolation for engineering optimization,” IEEE Trans. Microwave Theory and Tech., vol. 54, no. 6, pp. 2410–2421, June 2006.
[268] J.W. Bandler, S. Koziel and K. Madsen, ”Space mapping for engineering optimization,” SIAG/Optimization ViewsandNews Special Issue on Surrogate/Derivativefree Optimization, vol. 17, no. 1, pp. 1926, 2006.
[269] Q.S. Cheng, S. Koziel, and J.W. Bandler, “Simplified space mapping approach to enhancement of microwave device models,” Int. J. RF and Microwave ComputerAided Eng., vol. 16, no. 5, pp. 518535, 2006.
[270] S. Koziel and S. Szczepanski, “General activeRC filter model for computer‑aided design,” Bulletin of the Polish Academy of Sciences, vol. 54, no. 1, 2006, pp. 111.
[271] Z. Kamont and S. Koziel, “Functional differential inequalities with unbounded delay,” Ann. Polon. Math., vol. 88, 2006, pp. 1937.
[272] S. Koziel and R. Schaumann, “Continuous‑time active‑RC filter model for computer‑aided design and optimization,” IEEE Trans. Circuits Syst.—I, vol. 52, no. 7, 2005, pp. 1292‑1301.
[273] S. Koziel, R. Schaumann and H. Xiao, “Analysis and optimization of noise in continuous‑time OTAC filters,” IEEE Trans. Circuits Syst.—I, vol. 52, no. 6, 2005, pp. 1086‑1094.
[274] S. Koziel, “Continuous‑time active‑RC filter model for computer‑aided design and optimization,” Electronics and Telecommunications Quarterly, vol. 51, no. 2, 2005, pp. 335‑359.
[275] S. Koziel, “Distortion analysis of G_{m}‑C filters—numerical approach,” Electronics and Telecommunications Quarterly, vol. 51, no. 1, 2005, pp. 37‑54.
[276] S. Szczepanski and S. Koziel, “Activeerror feedforward technique for linearization of CMOS transconductance amplifier,” Electronics and Telecommunications Quarterly, vol. 51, no. 3, 2005, pp. 465477.
[277] S. Szczepanski and S. Koziel, “Active linear tunable resistance element and application to feedforward linearization of CMOS transconductance amplifier,” Electronics and Telecommunications Quarterly, vol. 51, no. 4, 2005, pp. 541554.
[278] S. Koziel, “Noise analysis and optimization of continuous‑time OTA‑C filters,” Electronics and Telecommunications Quarterly, vol. 51, no. 3, 2005, pp. 479494.
[279] S. Koziel, “Differential difference inequalities generated by infinite systems of parabolic functional differential equations,” Ann. Soc. Polon. Math., Comm. Math., vol. 44, 2004, pp. 99‑126.
[280] S. Koziel, S. Szczepanski and R. Schaumann, “Structure generation and performance comparison of elliptic G_{m}‑C filters,” Int. J. Circuit Theory Appl., vol. 32, no. 6, 2004, pp. 565‑589.
[281] Z. Kamont and S. Koziel, “Mixed problems for hyperbolic functional differential equations with unbounded delay,” Nonlinear Analysis, vol. 58. no. 56, 2004, pp. 489515.
[282] S. Koziel, “Hyperbolic functional differential systems with unbounded delay,” Zeit. Anal. Anwend., vol. 23, no. 2, 2004, pp. 377405.
[283] S. Koziel, “Canonic structures of odd‑order elliptic G_{m}‑C filters,” Electronics and Telecommunications Quarterly, vol. 50, no. 2, 2004, pp. 143‑157.
[284] S. Szczepanski and S. Koziel, “Phase compensation scheme for feedforward linearized CMOS operational transconductance amplifier,” Bulletin of the Polish Academy of Sciences, vol. 52, no. 2, 2004, pp. 91‑98.
[285] S. Koziel and W. Szczesniak, “Reducing average and peak temperatures of VLSI CMOS circuits by means of evolutionary algorithms applied to high level synthesis,” Microelectronics Journal, vol. 34, no. 12, 2003, pp. 1167‑1174.
[286] S. Koziel and W.A. Majewski, “On quantum correlations for stochastic dynamics of XXZ type,” Acta Physica Polonica B, vol. 34, 2003, pp. 37313739.
[287] S. Koziel, “Initial problems for infinite systems of hyperbolic functional differential equations,” Atti Sem. Mat. Fis. Univ. Modena, vol. 51, 2003, pp. 243‑257.
[288] Z. Kamont and S. Koziel, “Differential difference inequalities generated by infinite systems of quasilinear parabolic functional differential equations,” Func. Diff. Equat., vol. 10, 2003, pp. 215‑238.
[289] S. Koziel, “Mixed problems for infinite systems of quasilinear hyperbolic functional differential equations,” Demonstratio Mathematica, vol. 36, no. 3, 2003, pp. 659‑674.
[290] Z. Kamont and S. Koziel, “First order partial functional differential equations with unbounded delay,” Georgian Math. Journ., vol. 10, no. 3, 2003, pp. 509530.
[291] S. Koziel, “Efficient tolerance analysis of continuous‑time G_{m}‑C filters,” Electronics and Telecommunications Quarterly, vol. 49, no. 3, 2003, pp. 271‑294.
[292] S. Koziel, “Infinite systems of quasilinear differential difference inequalities and applications,” Applicable Analysis, vol. 83, no. 4, 2003, pp. 311327.
[293] S. Koziel, S. Szczepanski and R. Schaumann, “General approach to continuoustime G_{m}‑C filters,” Int. J. Circuit Theory Appl., vol. 31, 2003, pp. 361‑383.
[294] S. Koziel and S. Szczepanski, “Dynamic range comparison of voltage‑mode and current‑mode statespace G_{m}C biquad filters in reciprocal structures,” IEEE Trans. Circuits Syst.—I, vol. 50, no. 10, 2003, pp. 1245‑1255.
[295] S. Szczepanski and S. Koziel, “3.3V CMOS differential pair transconductor with active‑error feedback,” Bulletin of the Polish Academy of Sciences, vol. 51, no. 3, 2003, pp. 435‑444.
[296] Z. Kamont and S. Koziel, “Infinite systems of differential difference inequalities and applications,” Archives of Inequalities and Applications, vol. 1, no.2, 2003, pp. 137‑154.
[297] S. Koziel and S. Szczepanski, “Wlasciwosci dynamiczne filtrów G_{m}‑C zmiennych stanu trybu napieciowego i pradowego (Dynamical properties of state‑space G_{m}‑C filters implemented in voltage and current‑mode structures) (in Polish),” Elektronika, no. 23, 2003, pp. 36‑42.
[298] S. Szczepanski and S. Koziel, “Design of a 3.3V four‑quadrant analog CMOS multiplier,” Bulletin of the Polish Academy of Sciences, vol. 51, no. 2, 2003, pp. 163‑172.
[299] S. Koziel and S. Szczepanski, “Sensitivity performance of allpole canonical low‑pass G_{m}‑C filters,” Bulletin of the Polish Academy of Sciences, vol. 50, no. 4, 2002, pp. 313‑340.
[300] S. Koziel and W. Szczesniak, “Hybrid evolutionary partitioning algorithm for heat transfer enhancement in VLSI circuits,” Microelectronics Journal, vol. 33, no. 9, 2002, pp. 739‑746.
[301] S. Koziel and S. Szczepanski, “General description of state‑space continuous‑time G_{m}‑C filters,” Electronics and Telecommunications Quarterly, vol. 48, no. 3‑4, 2002, pp. 499‑521.
[302] S. Koziel and S. Szczepanski, “Design of highly linear tunable CMOS OTA using a linearizing differential pair in the output stage,” Bulletin of the Polish Academy of Sciences, vol. 50, no. 3, 2002, pp. 197‑211.
[303] S. Koziel and S. Szczepanski, “Design of highly linear tunable CMOS OTA for continuoustime filters,” IEEE Trans. Circuits Syst.—II, vol. 49, no. 2, 2002, pp. 110‑122.
[304] S. Koziel and W.A. Majewski, “Evolution of quantum correlations for jump‑type quantum stochastic dynamics,” Acta Physica Polonica B, vol. 33, 2002, pp. 11031114.
[305] S. Koziel and S. Szczepanski, “Design of linear CMOS OTA using a current addition/subtraction technique,” Electronics and Telecommunications Quarterly, vol. 47, no. 1, 2001, pp. 121133.
[306] S. Koziel and Z. Michalewicz, “Evolutionary algorithms, homomorphous mappings, and constrained parameter optimization,” Evolutionary Computation, vol. 7, no. 1, 1999, pp. 19‑44.
[307] S. Koziel, “Evolutionary algorithms for numerical optimization on convex spaces (in Polish),” Electronics and Telecommunications Quarterly, vol. 43, no. 1, 1997, pp. 5‑18.
[308] S. Koziel, “Multiobjective optimization of electronic circuits by means of evolutionary algorithms (in Polish),” Electronics and Telecommunications Quarterly, vol. 43, no. 1, 1997, pp. 1936.
[309] S. Koziel, “Nonuniform and nonstationary mutation in numerical optimization using genetic algorithms,” Electronics and Telecommunications Quarterly, vol. 42, no. 3, 1996, pp. 273285.
[310] S. Koziel, “Temperature interpolation in multidimensional models using transformation of multivariable function into the line segment (in Polish),” Electronics and Telecommunications Quarterly, vol. 42, no. 2, 1996, pp. 171193.
Refereed Conference Papers
[1] A. Amrit, L. Leifsson, and S. Koziel, “Aerodynamic design exploration through pointbypoint Pareto set identification using local surrogate models,” 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA Science and Technology Forum and Exposition 2018, Kissimmee, Florida, 812 January, 2018.
[2] X. Du, L. Leifsson, and S. Koziel, “Efficient inverse design of transonic airfoils using variablefidelity models and manifold mapping,” 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA Science and Technology Forum and Exposition 2018, Kissimmee, Florida, 812 January, 2018.
[3] S. Koziel, J.W. Jayasinghe, O.A. Saraerah, and D. Uduwawala, “Local optimization of a Sierpinski carpet fractal antenna,” IEEE Int. Conf. Industrial and Information Systems (ICIIS), 2017.
[4] S. Koziel, and M.A. Haq, “Topology considerations for compact UWB antenna design,” IEEE Loughborough Ant. Prop. Conf., 2017.
[5] D.O. Johannesson, and S. Koziel, “Reliable EMdriven size reduction of antennas using feasible region boundary search,” IEEE Loughborough Ant. Prop. Conf., 2017.
[6] A. Bekasiewicz, and S. Koziel, “Cost/performance tradeoff of domain segmentation for EMdriven surrogateassisted multiobjective antenna design,” IEEE Loughborough Ant. Prop. Conf., 2017.
[7] S. Koziel, and A. Bekasiewicz, “Size reduction of multiband antennas using featurebased optimization,” IEEE Loughborough Ant. Prop. Conf., 2017.
[8] M.A. Haq, S. Koziel, and Q.S. Cheng, “Structure and design optimization of compact antenna for internet of things applications,” Int. Applied Computational Electromagnetics Society (ACES China) Symposium, 2017.
[9] S. Ogurtsov, S. Koziel, and Q.S. Cheng, “Design of compact microstrip branchline couplers for broadband circularly polarized DRAs,” Int. Applied Computational Electromagnetics Society (ACES China) Symposium, 2017.
[10] S. Koziel and Q.S. Cheng, “Size reduction of UWB antennas with performance constraints,” Int. Applied Computational Electromagnetics Society (ACES China) Symposium, 2017.
[11] S. Koziel, J.W. Jayasinghe, J. Anguera, Q.S. Cheng, and D.N. Uduwawala, “Optimization of highdirectivity fanbeam antennas,” Int. Applied Computational Electromagnetics Society (ACES China) Symposium, 2017.
[12] S. Li, X. Fan, P. Laforge, Q.S. Cheng, and S. Koziel, “Augomated EMlevel design framework for sequential coupled resonator filters,” Int. Applied Computational Electromagnetics Society (ACES China) Symposium, 2017.
[13] M.A. Haq, S. Koziel, and Q.S. Cheng, “EMdriven size reduction of UWB antennas with ground plane modifications,” Int. Applied Computational Electromagnetics Society (ACES China) Symposium, 2017.
[14] F. Jiang, S. Li, Y. Yu, Q.S. Cheng, and S. Koziel, “Sensitivity optimization of antenna for noninvasive blood glucose monitoring,” Int. Applied Computational Electromagnetics Society (ACES China) Symposium, 2017.
[15] A. Bekasiewicz, S. Koziel, J.W. Bandler, and Q.S. Cheng, “Fast EMdriven multiobjective design of compact impedance transformers using Pareto ranking bisection algorithm,” Int. Applied Computational Electromagnetics Society (ACES China) Symposium, 2017.
[16] S. Koziel, A. Bekasiewicz, and J.W. Bandler, “Rapid dimension scaling of compact microwave couplers with power split correction,” IEEE European Microwave Conf., 2017.
[17] P. Kurgan and S. Koziel, “EMdriven compact cell topology selection for explicit size reduction of hybrid ratrace couplers,” IEEE European Microwave Conf., 2017.
[18] S. Koziel, and S. Ogurtsov “On systematic design of corporate feeds for Chebyshev microstrip linear antenna arrays,” IEEE Antennas Prop. Symp., 2017.
[19] A. Bekasiewicz, and S. Koziel, “Multiobjective optimization for assessment of topological modification in UWB antennas,” IEEE Antennas Prop. Symp., 2017.
[20] S. Koziel, and A. Bekasiewicz, “Rapid dimension scaling of tripleband antennas by means of inverse surrogate modeling,” IEEE Antennas Prop. Symp., 2017.
[21] S. Koziel, and A. Bekasiewicz “Implicit space mapping with substrate segmentation for reliable antenna optimization,” IEEE Antennas Prop. Symp., 2017.
[22] S. Koziel, and A. Bekasiewicz “Rapid statistical analysis and toleranceaware design of antennas by response feature surrogates,” IEEE Antennas Prop. Symp., 2017.
[23] D.O. Johanesson, S. Koziel, and A. Bekasiewicz, “An improved procedure for simulationdriven miniaturization of antenna structures,” IEEE Antennas Prop. Symp., 2017.
[24] P. Kurgan, S. Koziel, and Q.S. Cheng “EMdriven design of recurrent slowwave structures,” IEEE Int. Conf. Numerical Electromagnetics and Multiphysics Modeling and Optimization for RF, Microwave, and Terahertz Applications, Sevilla, Spain, May 1719, 2017.
[25] S. Koziel, and P. Kurgan, “Accelerated multiobjective design of integrated spiral inductors using Pareto front extrapolation,” IEEE Int. Conf. Numerical Electromagnetics and Multiphysics Modeling and Optimization for RF, Microwave, and Terahertz Applications, Sevilla, Spain, May 1719, 2017.
[26] S. Koziel, “On explicit size reduction of UWB antennas through EMdriven optimization,” IEEE Int. Conf. Numerical Electromagnetics and Multiphysics Modeling and Optimization for RF, Microwave, and Terahertz Applications, Sevilla, Spain, May 1719, 2017.
[27] S. Koziel, A. Bekasiewicz, Q.S. Cheng, and Q. Zhang “Multiobjective design of miniaturized impedance transformers by domain segmentation,” IEEE Int. Conf. Numerical Electromagnetics and Multiphysics Modeling and Optimization for RF, Microwave, and Terahertz Applications, Sevilla, Spain, May 1719, 2017.
[28] S. Koziel, A. Bekasiewicz, Q.S. Cheng, and Q. Zhang “Pareto ranking bisection algorithm for rapid multiobjective design of antenna structures,” IEEE Int. Conf. Numerical Electromagnetics and Multiphysics Modeling and Optimization for RF, Microwave, and Terahertz Applications, Sevilla, Spain, May 1719, 2017.
[29] S. Koziel, A. Bekasiewicz, and Q.S. Cheng “Multiobjective embased design optimization of compact branchline coupler,” IEEE Int. Conf. Numerical Electromagnetics and Multiphysics Modeling and Optimization for RF, Microwave, and Terahertz Applications, Sevilla, Spain, May 1719, 2017.
[30] S. Koziel and L. Leifsson, “Statisticalanalysisbased setup of physicsbased surrogates and optimization process resolution for variablefidelity aerodynamic design,” AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Denver, CO, USA, June 59, 2017.
[31] X. Du, L. Leifsson, and S. Koziel, “Robust airfoil design optimization using stochastic expansions and utility theory,” AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Denver, CO, USA, June 59, 2017.
[32] A. Amrit, X. Du, A. Thelen, L. Leifsson, and S. Koziel, “Aerodynamic design of the RAE 2822 in transonic viscous flow: single and multipoint optimization studies,” AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Denver, CO, USA, June 59, 2017.
[33] X. Du, A. Amrit, A. Thelen, L. Leifsson, Y. Zhang, Z.H. Han, and S. Koziel, “Aerodynamic design of a rectangular wing in subsonic inviscid flow by direct and surrogatebased optimization,” AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Denver, CO, USA, June 59, 2017.
[34] S. Koziel, “Space mapping: performance, reliability, open problems and perspectives,” IEEE Int. Microwave Symp., 2017.
[35] S. Koziel, A. Bekasiewicz, and J.W. Bandler “Implicit space mapping with variablefidelity EM simulations and substrate partitioning for reliable microwave design optimization,” IEEE Int. Microwave Symp., 2017.
[36] S. Koziel, P. Kurgan, and J.W. Bandler, ” Multiobjective mixedinteger design optimization of planar inductors using surrogate modeling techniques,” IEEE Int. Microwave Symp., 2017.
[37] S. Koziel and A. Bekasiewicz, “Lowcost surrogate modeling for rapid design optimization of antenna structures,” IEEE European Ant. Prop. Conf., 2017.
[38] S. Koziel, A. Bekasiewicz, Q.S. Cheng, and S. Li, “Accelerated multiobjective design optimization of antennas by surrogate modeling and domain segmentation,” IEEE European Ant. Prop. Conf., 2017.
[39] S. Koziel, A. Bekasiewicz, Q.S. Cheng, and S. Li, “On ultrawideband antenna miniaturization involving efficiency and matching constraints,” IEEE European Ant. Prop. Conf., 2017.
[40] S. Ogurtsov and S. Koziel, “Sidelobe reduction in linear antenna arrays with corporatefeeds of nonuniform power distribution,” IEEE European Ant. Prop. Conf., 2017.
[41] S. Koziel and A. Bekasiewicz, “Fast multicriterial statistical analysis and design optimization of compact microwave couplers,” International Review of Progress in Applied Computational Electromagnetics, 2017.
[42] S. Koziel and A. Bekasiewicz, “Rapid design optimization of compact couplers using response features and adjoint sensitivities,” International Review of Progress in Applied Computational Electromagnetics, 2017.
[43] S. Ogurtsov and S. Koziel, “Sidelobe reduction in linear microstrip arrays driven through microstrip corporate feeds,” International Review of Progress in Applied Computational Electromagnetics, 2017.
[44] S. Koziel and P. Kurgan, “Multiobjective emdriven design of integrated spiral inductors by pareto front exploration,” International Review of Progress in Applied Computational Electromagnetics, 2017.
[45] S. Koziel, A. Bekasiewicz, and Q.S. Cheng, “Multiobjective optimization of compact UWB impedance matching transformers using Pareto front exploration and adjoint sensitivities,” IEEE Int. Conf. Communication Systems, Shenzhen, China, 1416 December, 2016.
[46] S. Ogurtsov and S. Koziel, “Automated design of circularly polarized microstrip patch antennas with improved axial ratio,” IEEE Loughborough Ant. Prop. Conf., 2016.
[47] S. Koziel, A. Bekasiewicz, and Q.S. Cheng, “Fast redesign of antenna structures with respect to substrate permittivity and thickness,” IEEE Loughborough Ant. Prop. Conf., 2016.
[48] S. Koziel and A. Bekasiewicz, “Performance comparison of compact UWB antennas through multiobjective optimization,” IEEE Loughborough Ant. Prop. Conf., 2016.
[49] A. Bekasiewicz, S. Koziel, and Q.S. Cheng, “Reflection response control of bandwidthenhanced antennas through constrained optimization,” IEEE Loughborough Ant. Prop. Conf., 2016.
[50] S. Moskwa, S. Koziel, and Z. Galias, “Minimization of power supplyinterruptionrelated costs in power distribution grids using evolutionary methods,” Int. Conf. Signals and Electronic Systems, ICSES, 2016.
[51] S. Koziel, A. Bekasiewicz, and Q.S. Cheng, “Geometry scaling of UWB antennas with respect to material properties of the substrate,” IEEE Int. Conf. Numerical Electromagnetics and Multiphysics Modeling and Optimization for RF, Microwave, and Terahertz Applications, Beijing, China, July 2729, 2016.
[52] S. Koziel, A. Bekasiewicz, and Q.S. Cheng, “Expedited twoobjective dimension scaling of compact microwave passives using surrogate models,” IEEE Int. Conf. Numerical Electromagnetics and Multiphysics Modeling and Optimization for RF, Microwave, and Terahertz Applications, Beijing, China, July 2729, 2016.
[53] S. Koziel, A. Bekasiewicz, Q.S. Cheng, and Y. Chen, “Response features for fast EMdriven design of miniaturized impedance matching transformers,” IEEE Int. Conf. Numerical Electromagnetics and Multiphysics Modeling and Optimization for RF, Microwave, and Terahertz Applications, Beijing, China, July 2729, 2016.
[54] S. Koziel, A. Bekasiewicz, and Q.S. Cheng, “Patch size setup and performance/cost tradeoffs in multiobjective antenna optimization using domain patching technique,” IEEE Int. Conf. Numerical Electromagnetics and Multiphysics Modeling and Optimization for RF, Microwave, and Terahertz Applications, Beijing, China, July 2729, 2016.
[55] S. Koziel, A. Bekasiewicz, Q.S. Cheng, and Y. Chen, “Reducedcost modeling of dualband antennas exploiting response features,” IEEE Int. Conf. Numerical Electromagnetics and Multiphysics Modeling and Optimization for RF, Microwave, and Terahertz Applications, Beijing, China, July 2729, 2016.
[56] S. Koziel, A. Bekasiewicz, Q.S. Cheng, and Q. Zhang, “Expedited EMdriven design optimization of compact dualband microwave couplers using adaptve response scaling,” IEEE Int. Conf. Numerical Electromagnetics and Multiphysics Modeling and Optimization for RF, Microwave, and Terahertz Applications, Beijing, China, July 2729, 2016.
[57] S. Koziel, Q.S. Cheng, and Q. Zhang, “On lowcost space mapping optimization of antenna structures,” IEEE Int. Conf. Numerical Electromagnetics and Multiphysics Modeling and Optimization for RF, Microwave, and Terahertz Applications, Beijing, China, July 2729, 2016.
[58] S. Koziel and Q.S. Cheng, “Reducedcost datadriven modeling of antenna structures,” IEEE Int. Conf. Numerical Electromagnetics and Multiphysics Modeling and Optimization for RF, Microwave, and Terahertz Applications, Beijing, China, July 2729, 2016.
[59] L. Leifsson, S. Koziel, and Y. Tesfahunegn, “Aerodynamic shape optimization by manifold mapping and adjoint sensitivities,” AIAA Aviation and Aeronautics Forum and Exposition (AVIATION), Washington, DC, June 1317, 2016.
[60] A. Amrit, L. Leifsson, S. Koziel, and Y. Tesfahunegn, “Efficient multiobjective aerodynamic optimization by design space dimension reduction and cokriging,” AIAA Aviation and Aeronautics Forum and Exposition (AVIATION), Washington, DC, June 1317, 2016.
[61] A. Thelen, L. Leifsson, S. Koziel, and Y. Tesfahunegn, “Variablefidelity design optimization of dualrotor wind turbines using space mapping,” AIAA Aviation and Aeronautics Forum and Exposition (AVIATION), Washington, DC, June 1317, 2016.
[62] P. Kurgan and S. Koziel, “On fast optimization of quasiperiodic slowwave structures: application to broadband microwave coupler miniaturization,” XV National Conference of Electronics (KKE), Darlowko Wschodnie, Poland, June 610, 2016.
[63] P. Kurgan and S. Koziel, “Surrogatebased multiobjective optimization of compact microwave couplers,” XV National Conference of Electronics (KKE), Darlowko Wschodnie, Poland, June 610, 2016.
[64] T. Muszynski and S. Koziel, “Heat transfer optimization in compact air heat exchanger,” 5^{th} Micro and Nano Flows Conference, Milan, Italy, 1114 Sept. 2016.
[65] S. Koziel and A. Bekasiewicz, “Rapid adjointbased design optimization of compact microwave structures using multifidelity simulation models,” European Microwave Conference, 2016.
[66] S. Koziel and A. Bekasiewicz, “Multiobjective optimization of microwave couplers using corrected domain patching,” European Microwave Conference, 2016.
[67] S. Koziel and A. Bekasiewicz, “Inverse surrogate models for fast geometry scaling of miniaturized dualband couplers,” European Microwave Conference, 2016.
[68] E. Dimitriou, P. Boutikos, E. Sh. Mohamed, S. Koziel, and G. Papadakis, “Theoretical development of a reverse osmosis desalination membrane element operating in full and part load conditions,” Desalination for the Environment: Clean Water and Energy, Rome, Italy, 2226 May, 2016.
[69] A. Bekasiewicz and S. Koziel, “Novel structure and design of compact UWB slot antenna,” Int. Conf. Radar and Wireless Communications, 2016.
[70] S. Koziel and A. Bekasiewicz, “Fast design optimization of UWB antennas using response features,” Int. Conf. Radar and Wireless Communications, 2016.
[71] S. Koziel and A. Bekasiewicz, “Fast geometry scaling of UWB bandnotch antennas,” Int. Conf. Radar and Wireless Communications, 2016.
[72] S. Koziel and A. Bekasiewicz, “Rapid surrogateassisted statistical analysis of compact microstrip couplers,” Int. Conf. Radar and Wireless Communications, 2016.
[73] S. Koziel and A. Bekasiewicz, “Fast and precise geometry scaling of miniaturized microstrip couplers with unequal power split,” Int. Conf. Radar and Wireless Communications, 2016.
[74] A. Bekasiewicz and S. Koziel, “Costefficient simulationdriven design of compact impedance matching transformers,” Int. Conf. Radar and Wireless Communications, 2016.
[75] A. Bekasiewicz, S. Koziel, and W. Zieniutycz, “A structure and design optimization of a novel compact wideband microscrip dualband ratrace coupler,” Int. Conf. Radar and Wireless Communications, 2016.
[76] S. Koziel, A. Bekasiewicz, and L. Leifsson, “Costefficient microwave design optimization using adaptive response scaling,” Int. Conf. Comp. Science, 2016.
[77] S. Koziel, A. Bekasiewicz, and L. Leifsson, “Expedited dimension scaling of microwave and antenna structures using inverse surrogates,” Int. Conf. Comp. Science, 2016.
[78] I. Jonsson, L. Leifsson, S. Koziel, Y. Tesfahunegn, and A. Bekasiewicz, “Trawldoor shape optimization by spacemappingcorrected CFD models and kriging surrogates,” Int. Conf. Comp. Science, 2016.
[79] A. Bekasiewicz, S. Koziel, and L. Leifsson, “Sequential domain patching for computationally feasible multi objective optimization of expensive electromagnetic simulation models,” Int. Conf. Comp. Science, 2016.
[80] J. Siegler, L. Leifsson, S. Koziel, and A. Bekasiewicz, “Supersonic airfoil shape optimization using variablefidelity models and space mapping,” Int. Conf. Comp. Science, 2016.
[81] J. Siegler, L. Leifsson, R. Grandin, S. Koziel and A. Bekasiewicz, “Surrogate modeling of ultrasonic nondestructive evaluation simulations,” Int. Conf. Comp. Science, 2016.
[82] A. Bekasiewicz and S. Koziel, “A novel structure and design optimization of miniaturized UWB slot antenna,” Int. Symp. Antennas Prop., 2016.
[83] S. Koziel and A. Bekasiewicz, “A structure and design of a novel compact UWB MIMO antenna,” Int. Symp. Antennas Prop., 2016.
[84] S. Koziel and A. Bekasiewicz, “Lowcost multiobjective optimization of antennas using Pareto front exploration and response features,” Int. Symp. Antennas Prop., 2016.
[85] S. Koziel and A. Bekasiewicz, “Geometry scaling of dualband antennas through inverse surrogate models,” Int. Symp. Antennas Prop., 2016.
[86] A. Bekasiewicz and S. Koziel, “A structure and computationallyefficient design closure of compact splineparameterized UWB monopole antenna,” Int. Symp. Antennas Prop., 2016.
[87] S. Ogurtsov and S. Koziel, “Design of circular polarized DRAs with improved axial ratio bandwidth,” Int. Symp. Antennas Prop., 2016.
[88] S. Ogurtsov and S. Koziel, “Automated simulationdriven design tuning of circularly polarized microstrip patch antennas,” Int. Symp. Antennas Prop., 2016.
[89] J.W. Bandler, and S. Koziel, “Advances in electromagneticsbased design optimization,” Int. Microwave Symp., 2016.
[90] S. Koziel, and J.W. Bandler, “Lowcost dimension scaling and tuning of microwave filters using response features,” Int. Microwave Symp., 2016.
[91] C. Olivieri, F. de Paulis, A. Orlandi, R. Cecchetti, and S. Koziel, submitted, “Optimization procedure for removable EBG common mode filter design,” Int. Microwave Symp., 2016.
[92] A. Bekasiewicz, S. Koziel, and J.W. Bandler, “Lowcost multiobjective design of compact microwave structures using domain patching,” Int. Microwave Symp., 2016.
[93] P. Kurgan, S. Koziel, and J.W. Bandler, “Surrogatebased miniaturizationoriented design of twosection branchline couplers,” Int. Microwave Symp., 2016.
[94] S. Koziel and A. Bekasiewicz, “Accurate simulationdriven modeling and design optimization of compact microwave structures,” Int. Microwave Symp., 2016.
[95] S. Koziel and A. Bekasiewicz, “Sizereductionoriented design of compact CPWfed UWB monopole antenna,” International Review of Progress in Applied Computational Electromagnetics, 2016.
[96] A. Bekasiewicz and S. Koziel, “A novel structure and design of compact UWB slot antenna,” International Review of Progress in Applied Computational Electromagnetics, 2016.
[97] S. Koziel and A. Bekasiewicz, “Novel structure and sizereductionoriented design of microstrip compact ratrace coupler,” International Review of Progress in Applied Computational Electromagnetics, 2016.
[98] A. Bekasiewicz and S. Koziel, “Costefficient multiobjective design optimization of antennas in highlydimensional parameter spaces,” International Review of Progress in Applied Computational Electromagnetics, 2016.
[99] S. Koziel and A. Bekasiewicz, “Rapid multiobjective design optimization of miniaturized impedance transformer by Pareto front exploration,” International Review of Progress in Applied Computational Electromagnetics, 2016.
[100] S. Ogurtsov, S. Koziel, and A. Bekasiewicz, “Axial ratio improvement of circular polarized dielectric resonator antennas with dualpoint feeds,” International Review of Progress in Applied Computational Electromagnetics, 2016.
[101] A. Bekasiewicz, S. Koziel, and S. Ogurtsov, “Rapid simulationdriven design of compact photonic Yjunction by variabledimensional sequential approximate optimization,” International Review of Progress in Applied Computational Electromagnetics, 2016.
[102] A. Bekasiewicz, S. Koziel, and T. Dhaene, “A structure and design of novel compact UWB slot antenna,” European Antenna and Prop. Conf., 2016.
[103] S. Koziel, and A. Bekasiewicz, “Multiobjective antenna design using sequential domain patching with automated determination of patch size,” European Antenna and Prop. Conf., 2016.
[104] S. Koziel, A. Bekasiewicz, and L. Leifsson, “Costefficient modeling of input characteristics of narrowband antennas using response features,” European Antenna and Prop. Conf., 2016.
[105] S. Koziel, A. Bekasiewicz, and L. Leifsson, “Expedited design of dualband antennas using featurebased optimization,” European Antenna and Prop. Conf., 2016.
[106] S. Koziel and A. Bekasiewicz, “Variablefidelity design optimization of antennas with automated model selection,” European Antenna and Prop. Conf., 2016.
[107] A. Bekasiewicz, S. Koziel, and T. Dhaene, “Optimizationdriven design of compact UWB MIMO antenna,” European Antenna and Prop. Conf., 2016.
[108] J. Ren, L. Leifsson, S. Koziel, and Y.A. Tesfahunegn, “Multifidelity aerodynamic shape optimization using manifold mapping,” AIAA Aerospace Science and Technology Forum (AIAA SciTech), San Diego, CA, Jan 48, 2016.
[109] S. Koziel, Y. A. Tesfahunegn, A. Amrit, and L. Leifsson, “Rapid multiobjective aerodynamic design using cokriging and space mapping,” AIAA Aerospace Science and Technology Forum (AIAA SciTech), San Diego, CA, Jan 48, 2016.
[110] Y. A. Tesfahunegn, S. Koziel, J.R. Gramanzini, S. Hosder, Z.H. Han, and L. Leifsson, “Application of direct and surrogatebased optimization to twodimensional benchmark aerodynamic design problems: a comparative study,” AIAA Aerospace Science and Technology Forum (AIAA SciTech), San Diego, CA, Jan 48, 2016.
[111] A. Thelen, L. Leifsson, A. Sharma, and S. Koziel, “Direct and surrogatebased optimization of a dual rotor wind turbine,” AIAA Aerospace Science and Technology Forum (AIAA SciTech), San Diego, CA, Jan 48, 2016.
[112] S. Koziel, S. Ogurtsov, and J.P. Jacobs, “Rapid simulationbased design of covered planar microstrip antenna arrays by means of radiation response surrogates,” Loughborough Ant. Prop. Conf., Loughborough, UK, 23 Nov. 2015, pp. 14, 2015.
[113] S. Ulaganathan, S. Koziel, A. Bekasiewicz, I. Couckuyt, E. Laermans, and T. Dhaene, “Costefficient modeling of antenna structures using gradientenhanced kriging,” Loughborough Ant. Prop. Conf., Loughborough, UK, 23 Nov. 2015, pp. 14, 2015.
[114] S. Koziel, and A. Bekasiewicz, “Expedited geometry scaling of antenna structures by means of inverse surrogate modeling,” Loughborough Ant. Prop. Conf., 2015.
[115] S. Koziel, and A. Bekasiewicz, “Fast multiobjective antenna optimization using sequential patching and variablefidelity EM models,” Loughborough Ant. Prop. Conf., 2015.
[116] S. Koziel, A. Bekasiewicz, S. Ulaganathan, and T. Dhaene, “Fast design optimization of UWB antenna with WLAN bandnotch,” Loughborough Ant. Prop. Conf., 2015.
[117] D.I.L. de Villiers and S. Koziel, “Multiobjective optimization of cassegrain reflector feeds using space mapping surrogate models,” ICEAA, 2015.
[118] S. Koziel, and A. Bekasiewicz, “Multiobjective design of compact RF/microwave components using decomposition and surrogate modeling,” European Microwave Conference, pp. 211214, 2015.
[119] S. Koziel, and A. Bekasiewicz, “Rapid design optimization of microwave filters using variablefidelity EM simulations and adjoint sensitivity,” European Microwave Conference, 2015.
[120] P. Kurgan, and S. Koziel, “A novel wideband microstrip branchline coupler with compact footprint,” European Microwave Conference, 2015.
[121] M. Dionigi, S. Koziel, M. Mongiardo, and R. Perfetti, “Rigorous design of wireless power transfer links with one transmitter and two receivers,” European Microwave Conference, 2015.
[122] S. Koziel, and A. Bekasiewicz, “Computationallyefficient multiobjective optimization of antenna structures using pointbypoint Pareto set identification and local approximation surrogates,” IEEE Int. Conf. Numerical Electromagnetics and Multiphysics Modeling and Optimization for RF, Microwave, and Terahertz Applications, 2015.
[123] S. Koziel, A. Bekasiewicz, and L. Leifsson “Expedited design optimization of compact microwave structures using adjoint sensitivities and space mapping,” IEEE Int. Conf. Numerical Electromagnetics and Multiphysics Modeling and Optimization for RF, Microwave, and Terahertz Applications, 2015.
[124] S. Koziel and P. Kurgan, “Rapid hierarchical simulationdriven design of compact multisection branchline couplers,” IEEE Int. Conf. Numerical Electromagnetics and Multiphysics Modeling and Optimization for RF, Microwave, and Terahertz Applications, 2015.
[125] M. Dionigi, S. Koziel, M. Mongiardo, and R. Perfetti “Matched wireless power transfer links with multiple transmitters and receivers,” IEEE Int. Conf. Numerical Electromagnetics and Multiphysics Modeling and Optimization for RF, Microwave, and Terahertz Applications, 2015.
[126] S. Koziel, and A. Bekasiewicz, “Efficient design optimization of compact dualband microstrip branchline coupler using response features,” IEEE Int. Conf. Numerical Electromagnetics and Multiphysics Modeling and Optimization for RF, Microwave, and Terahertz Applications, 2015.
[127] A. Bekasiewicz, and S. Koziel, “Fast multiobjective design optimization of compact UWB matching transformers using variablefidelity EM simulations and design space reduction,” IEEE Int. Conf. Numerical Electromagnetics and Multiphysics Modeling and Optimization for RF, Microwave, and Terahertz Applications, 2015.
[128] Q.S. Cheng, J.W. Bandler, and S. Koziel, “A Review of Implicit Space Mapping Optimization and Modeling Techniques,” IEEE Int. Conf. Numerical Electromagnetics and Multiphysics Modeling and Optimization for RF, Microwave, and Terahertz Applications, 2015.
[129] S. Koziel and D.I.L. de Villiers, “Rapid EMdriven design optimization of antennas and antenna arrays by means of surrogate modeling,” Int. Conf. Innovative Research and Maritime Applications of Space Technology, Gdansk, Poland, 2015.
[130] S. Koziel, and S. Ogurtsov “Expedited microstrip linear antenna array design using radiation response surrogates,” Int. Symp. Antennas Prop., 2015.
[131] A. Bekasiewicz, and S. Koziel “Multiobjective design optimization of compact quasiisotropic dielectric resonator antenna,” Int. Symp. Antennas Prop., pp. 456457, 2015.
[132] B. Liu, and S. Koziel “Antenna array optimization using surrogatemodel aware evolutionary algorithm with local search,” Int. Symp. Antennas Prop., 2015.
[133] S. Koziel, and S. Ogurtsov “Sidelobe suppression of planar microstrip arrays by simulationbased phase and positiononly adjustment,” Int. Symp. Antennas Prop., 2015.
[134] A. Bekasiewicz, and S. Koziel “Rapid simulationdriven design of UWB antennas using surrogatebased optimization,” Int. Symp. Antennas Prop., 2015.
[135] D.I.L. de Villiers, and S. Koziel “Fast multiobjective optimization of shaped offset gregorian reflector systems,” Int. Symp. Antennas Prop., 2015.
[136] S. Koziel, and A. Bekasiewicz, “A structure and fast design of compact UWB antenna with upper WLAN bandnotch,” Int. Symp. Antennas Prop., 2015.
[137] A. Narbudowicz, S. Koziel, M.J. Amman, and D. Heberling, “Planar dualmode MIMO antenna with enhanced bandwidth,” Int. Symp. Antennas Prop., 2015.
[138] S. Koziel, A. Bekasiewicz, and L. Leifsson, “Multiobjective design optimization of planar YagiUda antenna using physicsbased surrogates and rotational design space reduction,” Int. Conf. Comp. Science, 2015.
[139] A. Bekasiewicz, S. Koziel, and L. Leifsson, “Fast optimization of integrated photonic components using response correction and local approximation surrogates,” Int. Conf. Comp. Science, 2015.
[140] Y. Tesfahunegn, S. Koziel, L. Leifsson, and A. Bekasiewicz, “Surrogatebased airfoil design with space mapping and adjoint sensitivity,” Int. Conf. Comp. Science, 2015.
[141] I.M. Jonsson, L. Leifsson, S. Koziel, Y.A. Tesfahunegn, and A. Bekasiewicz, “Shape optimization of trawldoors using variablefidelity models and space mapping,” Int. Conf. Comp. Science, 2015.
[142] Y. Tesfahunegn, S. Koziel, and L. Leifsson, “Multilevel airfoil optimization with adjoint sensitivity,” AIAA Aviation and Aeronautics Forum and Exposition (AVIATION), Dallas, TX, June 2226, 2015.
[143] S. Koziel, S. Ogurtsov, W. Zieniutycz, and A. Bekasiewicz, „Fast simulationdriven design of a planar UWB dipole antenna with an integrated balun,” European Conf. Ant. Prop., 2015.
[144] S. Koziel, and J.P. Jacobs, „Fast detection of faulty elements in EMsimulated antenna array models from amplitudeonly data,” European Conf. Ant. Prop., 2015.
[145] S. Koziel, and A. Bekasiewicz, „Rotational design space reduction for costefficient multiobjective antenna optimization,” European Conf. Ant. Prop., 2015.
[146] A. Bekasiewicz, S. Koziel, and J.P. Jacobs, „Simulationdriven size reduction of antenna structures using adjoint sensitivities and trust regions,” European Conf. Ant. Prop., 2015.
[147] S. Koziel, and J.W. Bandler, “Accurate modeling of microwave structures using variablefidelity response features,” Int. Microwave Symp., 2015.
[148] S. Koziel, and J.W. Bandler, “Fast EMdriven design optimization of microwave filters using adjoint sensitivity and response features,” Int. Microwave Symp., 2015.
[149] S. Koziel, A. Bekasiewicz, P. Kurgan, and J.W. Bandler, “Expedited multiobjective design optimization of miniaturized microwave structures using physicsbased surrogates,” Int. Microwave Symp., 2015.
[150] S. Koziel, A. Bekasiewicz, and P. Kurgan, “Size reduction of microwave couplers by EMdriven optimization,” Int. Microwave Symp., 2015.
[151] P. Kurgan, S. Koziel, and J.W. Bandler, “Lowcost EMdriven surrogate modeling and optimization of planar inductors,” Int. Microwave Symp., 2015.
[152] S. Koziel, A. Bekasiewicz, and P. Kurgan, “Rapid design optimization of miniaturized ratrace coupler using multifidelity electromagnetic models,” International Review of Progress in Applied Computational Electromagnetics, 2015.
[153] A. Bekasiewicz, and S. Koziel, “Fast microwave filter optimization using adjoint sensitivities and variablefidelity electromagnetic simulations,” International Review of Progress in Applied Computational Electromagnetics, 2015.
[154] A.P. Duffy, G. Zhang, S. Koziel, and L. Wang, “Automated selection of structure discretization level for EMbased modeling and optimization,” International Review of Progress in Applied Computational Electromagnetics, 2015.
[155] S. Koziel, and A. Bekasiewicz, “Lowcost multiobjective antenna optimization with design space reduction and cokriging surrogates,” International Review of Progress in Applied Computational Electromagnetics, 2015.
[156] P. Kurgan, and S. Koziel, “Multifidelity design optimization of planar inductors with Sonnet,” International Review of Progress in Applied Computational Electromagnetics, 2015.
[157] A. Bekasiewicz, and S. Koziel, “Rapid simulationdriven design optimization of photonic directional couplers using variablefidelity EM simulations,” International Review of Progress in Applied Computational Electromagnetics, 2015.
[158] Y. A. Tesfahunegn, S. Koziel, J.R. Gramanzini, S. Hosder, Z.H. Han, and L. Leifsson, “Direct and surrogatebased optimization of benchmark aerodynamic problems: A Comparative Study,” 53rd AIAA Aerospace Sciences Meeting, Science and Technology Forum, Kissimee, Florida, Jan 59, 2015.
[159] L. Leifsson, S. Koziel, and S. Hosder, “MultiObjective aeroacoustic shape optimization by variablefidelity models and response surface surrogates,” AIAA Modeling and Simulation Technologies Conference, Kissimee, Florida, Jan 59, 2015.
[160] Y. A. Tesfahunegn, S. Koziel, and L. Leifsson, “Surrogatebased airfoil design with multilevel optimization and adjoint sensitivities,” 53rd AIAA Aerospace Sciences Meeting, Science and Technology Forum, Kissimee, Florida, Jan 59, 2015.
[161] H. Shah, S. Hosder, L. Leifsson, S. Koziel, and Y. A. Tesfahunegn, “Multifidelity robust aerodynamic design optimization under mixed uncertainty,” 17th AIAA NonDeterministic Approaches Conference, Kissimee, Florida, Jan 59, 2015.
[162] S. Koziel and S. Ogurtsov, “Phasespacing optimization of linear microstrip antenna arrays by EMbased superposition models,” Loughborough Antenna Prop. Conf., 2014.
[163] S. Koziel and A. Bekasiewicz, “Variablefidelity optimization of antennas using adjoint sensitivities,” Loughborough Antenna Prop. Conf., 2014.
[164] A. Bekasiewicz, and S. Koziel, “Rapid multiobjective optimization of a MIMO antenna for UWB applications,” Loughborough Antenna Prop. Conf., 2014.
[165] M. Zmuda, S. Szczepanski, and S. Koziel, “Analysis of positioning error and its impact on high frequency performance parameters of differential signal coupler,” National Conference of Electronics, Poland, 2014.
[166] S. Koziel, A. Bekasiewicz, P. Kurgan, and L. Leifsson, “Lowcost EMsimulationbased multiobjective design optimization of miniaturized microwave structures,” Int. Conf. on Simulation and Modeling Methodologies, Technologies and Applications, Vienna, Austria, August 2830, 2014.
[167] A. Bekasiewicz, S. Koziel, and L. Leifsson “Computationally efficient multiobjective optimization and experimental validation of YagiUda antenna,” Int. Conf. on Simulation and Modeling Methodologies, Technologies and Applications, Vienna, Austria, August 2830, 2014.
[168] E. Hermannsson, L. Leifsson, S. Koziel, P. Kurgan, and A. Bekasiewicz “Trawldoor shape optimization with 3D CFD models and local surrogates,” Int. Conf. on Simulation and Modeling Methodologies, Technologies and Applications, Vienna, Austria, August 2830, 2014.
[169] S. Koziel, L. Leifsson, P. Kurgan, and Y. Tesfahunegn, “Simulationdriven aerodynamic optimization with automated lowfidelity model setup,” AIAA/ISSMO Multidisciplinary Analysis and Optimization Conf., Atlanta, GA, July 1620, 2014.
[170] J.P. Jacobs, and S. Koziel, “Reducedcost modelling of microwave filter transmission characteristics using Gaussian Process Regression in two stages,” South African IEEE Joint AP/MTT/EMC Chapter Conference, May 56, Pretoria, South Africa, 2014.
[171] S. Koziel, and S. Ogurtsov, “Expedited microstrip antenna array design through surrogatebased optimization,” to appear, European Microwave Conference, 2014.
[172] S. Koziel, and A. Bekasiewicz, “Simulationdriven design of planar filters using response surface approximations and space mapping,” European Microwave Conference, 2014.
[173] M. Dionigi, S. Koziel, and M. Mongiardo, “Surrogatebased optimization of efficient resonant wireless power transfer links using conjugate image impedances,” to appear, European Microwave Conference, 2014.
[174] O. Glubokov, S. Koziel, “Automated inverse design of bandpass filters with invariable layout through linear approximation of physical dimensions,” to appear, European Microwave Conference, 2014.
[175] S. Koziel, and P. Kurgan, “Lowcost optimization of compact branchline couplers and its application to miniaturized Butler matrix design,” to appear, European Microwave Conference, 2014.
[176] A. Bekasiewicz, S. Koziel, S. Ogurtsov, and W. Zieniutycz, “Design of microstrip antenna subarrays: a simulationdriven surrogatebased approach,” Int. Conf. Microwaves, Radar, and Wireless Comm., MIKON, 2014.
[177] A. Bekasiewicz, S. Koziel, and W. Zieniutycz, “Lowcost multiobjective optimization of YagiUda antenna in multidimensional parameter space,” Int. Conf. Microwaves, Radar, and Wireless Comm., MIKON, 2014.
[178] A. Bekasiewicz and S. Koziel, “Localglobal space mapping for rapid EMdriven design of compact RF structures,” Int. Conf. Microwaves, Radar, and Wireless Comm., MIKON, 2014.
[179] S. Koziel, A. Bekasiewicz, and W. Zieniutycz, “Fast multiobjective antenna design through variablefidelity EM simulations,” Int. Symp. Antenna Technology and Applied Electromagnetics, 2014.
[180] S. Koziel, and A. Bekasiewicz, “Novel structure and EMdriven design of small UWB monopole antenna,” submitted, Int. Symp. Antenna Technology and Applied Electromagnetics, 2014.
[181] A. Bekasiewicz, S. Koziel, and L. Leifsson, “Lowcost EMsimulationdriven multifidelity optimization of antennas,” Int. Conf. Comp. Science, 2014.
[182] A. Bekasiewicz, S. Koziel, P. Kurgan, and L. Leifsson, “Nested space mapping technology for expedite EMdriven design of compact RF/microwave components,” Int. Conf. Comp. Science, 2014.
[183] L. Leifsson, S. Koziel, and A. Bekasiewicz, “Fast lowfidelity wing aerodynamics model for surrogatebased shape optimization,” Int. Conf. Comp. Science, 2014.
[184] S. Koziel, S. Ogurtsov, and W. Zieniutycz, “Microstrip antenna subarray design through simulationdriven surrogate optimization,” to appear, Int. Symp. Antennas Prop., 2014.
[185] S. Koziel, S. Ogurtsov, A. Bekasiewicz, and W. Zieniutycz, “EMdriven multiobjective optimization of antenna structures in multidimensional design spaces,” to appear, Int. Symp. Antennas Prop., 2014.
[186] S. Koziel, “Expedite design optimization of narrowband antennas using response features,” to appear, Int. Symp. Antennas Prop., 2014.
[187] S. Koziel, and A. Bekasiewicz, “Small antenna design using surrogatebased optimization,” to appear, Int. Symp. Antennas Prop., 2014.
[188] A. Bekasiewicz, and S. Koziel, “A concept and design optimization of compact planar UWB monopole antenna,” to appear, Int. Symp. Antennas Prop., 2014.
[189] S. Koziel, and J.W. Bandler, “Featurebased statistical analysis for rapid yield estimation of microwave structures,” to appear, Int. Microwave Symp., 2014.
[190] S. Koziel, J.W. Bandler, and Q.S. Cheng, “Lowcost featurebased modeling of microwave structures,” to appear, Int. Microwave Symp., 2014.
[191] O. Glubokov, and S. Koziel, “EMdriven tuning of substrate integrated waveguide filters exploiting featurespace surrogates,” to appear, Int. Microwave Symp., 2014.
[192] M. Dionigi, S. Koziel, and M. Mongiardo, “Fullwave computeraided optimization of wireless power transfer systems,” to appear, Int. Microwave Symp., 2014.
[193] Q.S. Cheng, J.W. Bandler, and S. Koziel, “A maximally flat quadratic interpolation enhanced input space mapping modeling approach,” to appear, Int. Microwave Symp., 2014.
[194] S. Koziel, “Lowcost yield estimation for FEKOsimulated structures,” to appear, International Review of Progress in Applied Computational Electromagnetics, 2014.
[195] S. Koziel, and S. Ogurtsov, “Simulationdriven optimization approach for fast design of integrated photonic components,” to appear, International Review of Progress in Applied Computational Electromagnetics, 2014.
[196] O. Glubokov, and S. Koziel, “Substrate integrated waveguide microwave filter tuning through variablefidelity feature space optimization,” to appear, International Review of Progress in Applied Computational Electromagnetics, 2014.
[197] A. Bekasiewicz, S. Koziel, and W. Zieniutycz, “Design space reduction and variablefidelity EM simulations for feasible Pareto optimization of antennas,” to appear, International Review of Progress in Applied Computational Electromagnetics, 2014.
[198] O. Glubokov, and S. Koziel, “Efficient optimization of a dualmodel microstrip crosscoupled filter using cocalibrated ports in Sonnet,” to appear, International Review of Progress in Applied Computational Electromagnetics, 2014.
[199] J.P. Jacobs, S. Koziel, and P. Kurgan, “Computationally inexpensive modeling of microwave filters by means of a twostage Gaussian process regression methodology,” to appear, International Review of Progress in Applied Computational Electromagnetics, 2014.
[200] S. Koziel, and S. Ogurtsov, “Fast design of microstrip antenna arrays exploiting surrogate models,” to appear, European Conf. Antennas Prop., 2014.
[201] J.P. Jacobs, and S. Koziel, “Costefficient dualstage Gaussian process modeling of antennas,” to appear, European Conf. Ant. Prop., 2014.
[202] S. Koziel, S. Ogurtsov, I. Couckuyt, and T. Dhaene, “Multiobjective design of antenna structures using variablefidelity EM simulations and cokriging,” to appear, European Conf. Ant. Prop., 2014.
[203] S. Koziel and L. Leifsson, “Wing shape optimization using local response surface approximations, space mapping and physicsbased surrogates,” AIAA Science and Tech. Forum and Exposition (SciTech 2014), 2014.
[204] S. Koziel and L. Leifsson, “Automated lowfidelity model selection for CFDbased aerodynamic shape optimization,” AIAA Science and Tech. Forum and Exposition (SciTech 2014), 2014.
[205] S. Koziel and L. Leifsson, “Multiobjective airfoil design using variablefidelity CFD simulations and response surface surrogates,” AIAA Science and Tech. Forum and Exposition (SciTech 2014), 2014.
[206] L. Leifsson, S. Koziel, S. Hosder and D.W. Riggins, “Physicsbased multifidelity surrogate modeling with entropybased availability methods,” AIAA Science and Tech. Forum and Exposition (SciTech 2014), 2014.
[207] L. Leiffson, S. Koziel, E. Hermannsson, and R. Fakhraie, “Trawldoor design optimization by local surrogate models,” AIAA Science and Tech. Forum and Exposition (SciTech 2014), 2014.
[208] L. Leifsson, S. Koziel, and S. Hosder, “Aerodynamic design optimization: physicsbased surrogate approaches for airfoil and wing design,” AIAA Science and Tech. Forum and Exposition (SciTech 2014), 2014.
[209] S. Koziel and S. Ogurtsov, “Multiobjective design optimization of planar Yagi antenna using surrogate models,” Loughborough Antenna & Propagation Conference, 2013.
[210] S. Koziel and S. Ogurtsov, “Enhancing radiation response of ultrawideband monopoles using surrogatebased optimization,” Loughborough Antenna & Propagation Conference, 2013.
[211] S. Koziel and S. Ogurtsov, “Multipoint response correction for costefficient antenna and microwave design optimization,” Loughborough Antenna & Propagation Conference, 2013.
[212] O. Glubokov, S. Koziel, and L. Leifsson, “Surrogate modeling and optimization of inline Eplane waveguide extracted pole filters,” Int. Conf. on Simulation and Modeling Methodologies, Technologies and Applications, 2013.
[213] S. Koziel, S. Ogurtsov, and L. Leifsson, “Design of antenna arrays using surrogatebased optimization,” Int. Conf. on Simulation and Modeling Methodologies, Technologies and Applications, 2013.
[214] S. Koziel, S. Ogurtsov, and L. Leifsson, “Lowcost modeling of waveguide filters using decomposition and space mapping,” Int. Conf. on Simulation and Modeling Methodologies, Technologies and Applications, 2013.
[215] L. Leifsson, S. Koziel, S. Ogurtsov, and O. Glubokov, “Variablefidelity aerodynamic optimization by CFDbased models,” Int. Conf. on Simulation and Modeling Methodologies, Technologies and Applications, 2013.
[216] E. Hermannsson, L. Leifsson, S. Koziel, S. Ogurtsov, O. Glubokov, and R. Fakhraie, “Hydrodynamic design optimization of trawldoor shapes with local surrogate models,” Int. Conf. on Simulation and Modeling Methodologies, Technologies and Applications, 2013.
[217] S. Koziel, S. Ogurtsov and L. Leifsson, “Physicsbased surrogates for lowcost modeling of microwave structures,” Int. Conf. Comp. Science, 2013.
[218] S. Koziel and L. Leifsson, “Shapepreserving response prediction for engineering design optimization,” Int. Conf. Comp. Science, 2013.
[219] S. Koziel and L. Leifsson, “Multilevel CFDbased airfoil shape optimization with automated lowfidelity model selection,” Int. Conf. Comp. Science, 2013.
[220] X.S. Yang, S. Koziel, and L. Leifsson, “Computational optimization, modeling and simulation: recent trends and challenges,” Int. Conf. Comp. Science, 2013.
[221] M. Zmuda, S. Szczepanski, and S. Koziel, “The contactless method of chiptochip high speed data transmission monitoring,” National Conference of Electronics, Poland, 2013.
[222] O. Glubokov and S. Koziel, “Response surface modeling of microwave filters using coupling matrices,” European Microwave Conference, 2013.
[223] S. Koziel and S. Ogurtsov, “Lowcost design of SIW antennas using surrogatebased optimization,” to appear, IEEE APWC, 2013.
[224] S. Koziel and S. Ogurtsov, “Multimode interference power divider design using surrogate models,” ICEAA, 2013.
[225] S. Koziel and J.P. Jacobs, “Accurate modeling of wideband antennas using variablefidelity simulations, kriging and parameterized response correction,” IEEE APWC, 2013.
[226] J.P. Jacobs and S. Koziel, “Singlemodel versus ensemblemodel strategies for efficient Gaussian process surrogate modeling of antenna input characteristics,” ICEAA, 2013.
[227] S. Koziel and S. Ogurtsov, “Design optimization of omnidirectional antennas using the AADS technique and kriging,” Int. Symp. Antennas Prop., 2013.
[228] S. Koziel and S. Ogurtsov, “Variablefidelity optimization of UWB antennas with automated model fidelity selection,” Int. Symp. Antennas Prop., 2013.
[229] S. Koziel and S. Ogurtsov, “Multiobjective design of UWB antennas using surrogatebased optimization,” Int. Symp. Antennas Prop., 2013.
[230] S. Koziel and S. Ogurtsov, “Design optimization of microstrip antenna arrays using surrogatebased methodology,” Int. Symp. Antennas Prop., 2013.
[231] S. Koziel and L. Leifsson, “EMsimulationdriven antenna design using multipoint response correction,” Int. Symp. Antennas Prop., 2013.
[232] S. Koziel and J.P. Jacobs, “Gaussian process antenna modeling using neighborhooddataexpanded training sets,” Int. Symp. Antennas Prop., 2013.
[233] S. Koziel, I. Couckuyt, and T. Dhaene, “Reliable design closure of Sonnetsimulated structures using cokriging,” International Review of Progress in Applied Computational Electromagnetics, 2013.
[234] S. Koziel, “Local response surface approximation for efficient multilevel optimization of FEKOsimulated microwave components,” International Review of Progress in Applied Computational Electromagnetics, 2013.
[235] S. Koziel and S. Ogurtsov, “Modeling and design optimization of filters using Sonnet simulation, decomposition and response surface approximations,” International Review of Progress in Applied Computational Electromagnetics, 2013.
[236] S. Koziel and J.P. Jacobs, “Modeling of microwave structures using variablefidelity FEKO simulations, fuzzy systems and space mapping,” International Review of Progress in Applied Computational Electromagnetics, 2013.
[237] S. Koziel and S. Ogurtsov, “Microstrip antenna array optimization using surrogatebased methodology,” International Review of Progress in Applied Computational Electromagnetics, 2013.
[238] S. Koziel and S. Ogurtsov, “Compact UWB monopole design using dielectric loading and simulationdriven optimization,” International Review of Progress in Applied Computational Electromagnetics, 2013.
[239] S. Koziel and S. Ogurtsov, “Multilevel design optimization of microwave structures with automated model fidelity adjustment,” Int. Microwave Symp., 2013.
[240] S. Koziel, S. Ogurtsov, and J.W. Bandler, “Shapepreserving response prediction with adjoint sensitivities for microwave design optimization,” Int. Microwave Symp., 2013.
[241] S. Koziel, J.W. Bandler, and Q.S. Cheng, “Enhanced fidelity modeling of microwave structures combining shapepreserving response prediction with space mapping,” Int. Microwave Symp., 2013.
[242] Q.S. Cheng, J.W. Bandler, S. Koziel and N. Nikolova, “A statistical input space mapping approach for accommodating modeling residuals,” Int. Microwave Symp., 2013.
[243] S. Koziel and S. Ogurtsov, “EMsimulationbased antenna design using adaptive response correction,” European Conf. Antennas & Propagation, 2013.
[244] S. Koziel, S. Ogurtsov, and J.P. Jacobs, “Modeling of wideband antennas using spacemappingcorrected kriging surrogates,” to appear, European Conf. Antennas & Propagation, 2013.
[245] S. Koziel and S. Ogurtsov, “Simulationdriven design of a microstrip antenna array by means of surrogatebased optimization,” to appear, European Conf. Antennas & Propagation, 2013.
[246] S. Koziel and S. Ogurtsov, “Design of compact UWB monopoles using dielectric loading and numerical optimization,” to appear, European Conf. Antennas & Propagation, 2013.
[247] S. Koziel and L. Leifsson „MultiLevel SurrogateBased Airfoil Shape Optimization,” AIAA Aerospace Sciences Meeting, Grapevine, TX, January 710, 2013.
[248] Y. Zhang, S. Hosder, S. Koziel and L. Leifsson, „LowCost Robust Airfoil Optimization by VariableFidelity Models and Stochastic Expansions,” AIAA Aerospace Sciences Meeting, Grapevine, TX, January 710, 2013.
[249] E. Jonsson, E. Hermannsson, M. Juliusson, S. Koziel, and L. Leifsson, „Computational Fluid Dynamics Analysis and Shape Optimization of TrawlDoors,” AIAA Aerospace Sciences Meeting, Grapevine, TX, January 710, 2013.
[250] E. Jonsson, L. Leifsson, and S. Koziel, „Aerodynamic Optimization of Wings by Space Mapping,” AIAA Aerospace Sciences Meeting, Grapevine, TX, January 710, 2013.
[251] S. Koziel and S. Ogurtsov, “Antenna design using variablefidelity electromagnetic simulations,” Int. Workshop Optimization and Inverse Problems in Electromagnetism, Ghent, Belgium, Sept. 1921, 2012, pp. 2021.
[252] S. Koziel and S. Ogurtsov, “Wideband antenna design through variablefidelity EM simulations,” Loughborough Antenna and Prop. Conf., 2012.
[253] S. Koziel, S. Ogurtsov, and J.P. Jacobs, “Lowcost design optimization of slot antennas using Bayesian support vector regression and space mapping,” Loughborough Antenna and Prop. Conf., 2012.
[254] S. Koziel and S. Ogurtsov, “Endfire array synthesis using gradientbased numerical optimization with analytical derivatives,” Loughborough Antenna and Prop. Conf., 2012.
[255] S. Koziel, L. Leifsson, and S. Ogurtsov, “Microwave design optimization exploiting adjoint sensitivity,” Int. Conf. Simulation and Modeling Methodologies, Technologies and Appl., SIMULTECH 2012, 2012.
[256] S. Koziel, S. Ogurtsov, and L. Leifsson, “Managing model fidelity for efficient optimization of antennas using variableresolution electromagnetic simulations,” Int. Conf. Simulation and Modeling Methodologies, Technologies and Appl., SIMULTECH 2012, 2012.
[257] E. Jonsson, L. Leifsson, and S. Koziel, “Transonic wing optimization by variableresolution modeling and space mapping,” Int. Conf. Simulation and Modeling Methodologies, Technologies and Appl., SIMULTECH 2012, 2012.
[258] E. Jonsson, L. Leifsson, and S. Koziel, “Trawldoor performance analysis and design optimization with CFD,” Int. Conf. Simulation and Modeling Methodologies, Technologies and Appl., SIMULTECH 2012, 2012.
[259] B. Helgason, L. Leifsson, I. Rikhardsson, H. Thorgilsson, and S. Koziel, “Lowspeed modeling and simulation of torpedoshaped AUVs,” Int. Conf. Informatics in Control, Automation and Robotics, ICINCO, 2012.
[260] L. Leifsson and S. Koziel, “Variableresolution shape optimization: lowfidelity model setup and algorithm scalability,” AIAA/ISSMO Multidisciplinary Analysis and Optimization Conf., 2012.
[261] M. Zmuda, S. Szczepanski, and S. Koziel, „Microstrip differential signal coupler. Concept, design and applications,” National Conference of Electronics, Darlowko, Poland, pp. 717722, June 1114, 2012.
[262] S. Koziel and L. Leifsson, “Multifidelity airfoil shape optimization with adaptive response prediction,”AIAA/ISSMO Multidisciplinary Analysis and Optimization Conf., 2012.
[263] S. Koziel and S. Ogurtsov “Robust microwave design optimization using manifold mapping with adjoint sensitivity,” IEEE European Microwave Conference, 2012.
[264] S. Koziel, I. Couckuyt, and T. Dhaene “Variablefidelity optimization of microwave filters using cokriging and trust regions,” IEEE European Microwave Conference, 2012.
[265] S. Koziel, S. Ogurtsov, I. Couckuyt, and T. Dhaene, “Efficient simulationdriven design optimization of antennas using cokriging,” IEEE Int. Symp. Antennas Prop., 2012.
[266] S. Koziel and S. Ogurtsov “Selecting model fidelity for antenna design using surrogatebased optimization,” IEEE Int. Symp. Antennas Prop., 2012.
[267] S. Koziel and S. Ogurtsov “Model management for efficient EMsimulationdriven design of dielectric resonator antennas,” IEEE Int. Symp. Antennas Prop., 2012.
[268] S. Koziel and S. Ogurtsov “Linear antenna array synthesis using gradientbased optimization with analytical derivatives,” IEEE Int. Symp. Antennas Prop., 2012.
[269] S. Koziel and S. Ogurtsov “Design of hybrid ultrawideband monocone–dielectric resonator antennas with different load materials,” IEEE Int. Symp. Antennas Prop., 2012.
[270] S. Koziel and S. Ogurtsov “A study of basic slot antenna configurations using simulationdriven optimization,” IEEE Int. Symp. Antennas Prop., 2012.
[271] J.P. Jacobs, S. Koziel, and S. Ogurtsov, “Reducedcost Bayesian support vector regression modeling and optimization of planar slot antennas,” IEEE Int. Symp. Antennas Prop., 2012.
[272] S. Koziel and L. Leifsson, “Adaptive response correction for surrogatebased airfoil shape optimization,” AIAA Applied Aerodynamics Conference, 2012.
[273] L. Leifsson, S. Koziel, and S. Hosder, “Aerodynamic and aeroacoustic performance of subsonic airfoils,” AIAA Applied Aerodynamics Conference, 2012.
[274] L. Leifsson and S. Koziel, “Surrogatebased shape optimization of lowspeed wind tunnel contractions,” AIAA Applied Aerodynamics Conference, 2012.
[275] S. Koziel and L. Leifsson, “Knowledgebased airfoil shape optimization using space mapping,” AIAA Applied Aerodynamics Conference, 2012.
[276] X.S. Yang, S. Koziel, and L. Leifsson, “Computational optimization, modelling and simulation: smart algorithms and better models,” Int. Conf. Computational Science, 2012.
[277] S. Koziel, S. Ogurtsov, and L. Leifsson, “Knowledgebased response correction and adaptive design specifications for microwave design optimization,” Int. Conf. Computational Science, 2012.
[278] L. Leifsson, S. Koziel, and S. Ogurtsov, “Lowfidelity model mesh density and the performance of variableresolution shape optimization algorithms,” Int. Conf. Computational Science, 2012.
[279] L. Leifsson, S. Koziel, F. Andrason, K. Magnusson, and A. Gylfason, “Numerical optimization and experimental validation of a lowspeed wind tunnel contraction,” Int. Conf. Computational Science, 2012.
[280] S. Koziel and L. Leifsson “Scaling properties of multifidelity shape optimization algorithms,” Int. Conf. Computational Science, 2012.
[281] S. Koziel and L. Leifsson, “Adaptive response correction for lowcost optimization of microwave structures with FEKO,” International Review of Progress in Applied Computational Electromagnetics, Columbus, OH, USA, April 1014, pp. 7378, 2012.
[282] S. Koziel, “Reliable design optimization of FEKOsimulated microwave structures using manifold mapping,” International Review of Progress in Applied Computational Electromagnetics, Columbus, OH, USA, April 1014, pp. 491496, 2012.
[283] S. Koziel, F. Mosler, S. Reitzinger, and P. Thoma, “Microwave design optimization using adjoint sensitivity and trust regions,” International Review of Progress in Applied Computational Electromagnetics, Columbus, OH, USA, April 1014, pp. 317322, 2012.
[284] S. Koziel, J.W. Bandler, and Q.S. Cheng, “Space mapping enhanced kriging surrogates for accurate modeling of microwave structures,” International Review of Progress in Applied Computational Electromagnetics, Columbus, OH, USA, April 1014, pp. 341346, 2012.
[285] S. Koziel, “Multipoint shapepreserving response prediction for rapid simulationdriven microwave design,” International Review of Progress in Applied Computational Electromagnetics, Columbus, OH, USA, April 1014, pp. 10761081, 2012.
[286] S. Koziel and S. Ogurtsov, “Design of broadband transitions for substrate integrated circuits,” International Review of Progress in Applied Computational Electromagnetics, Columbus, OH, USA, April 1014, pp. 10701075, 2012.
[287] S. Koziel, “Design optimization of Sonnetsimulated structures using space mapping and kriging,” International Review of Progress in Applied Computational Electromagnetics, Columbus, OH, USA, April 1014, pp. 656661, 2012.
[288] M. Zmuda, S. Szczepanski, and S. Koziel, “Design and fullwave EM simulation of novel microstrip directional coupler for differential signal decoupling,” International Review of Progress in Applied Computational Electromagnetics, Columbus, OH, USA, April 1014, pp. 347352, 2012.
[289] J.P. Jacobs and S. Koziel, “Gaussian process modeling of multivariable microwave filters using nonstandard covariance functions,” International Review of Progress in Applied Computational Electromagnetics, Columbus, OH, USA, April 1014, pp. 10821086, 2012.
[290] S. Koziel, “Accurate modeling of microwave structures using generalized shapepreserving response prediction,” IEEE MTTS Int. Microwave Symp. Dig., 2012.
[291] S. Koziel and S. Ogurtsov, “CPUbudgetdriven automated microwave design optimization using variablefidelity electromagnetic simulations,” IEEE MTTS Int. Microwave Symp. Dig., 2012.
[292] S. Koziel, S. Ogurtsov, J.W. Bandler, and Q.S. Cheng, “Robust space mapping optimization exploiting EMbased models with adjoint sensitivity,” IEEE MTTS Int. Microwave Symp. Dig., 2012.
[293] S. Koziel, I. Couckuyt, and T. Dhaene, “Reliable lowcost cokriging modeling of microwave devices,” IEEE MTTS Int. Microwave Symp. Dig., 2012.
[294] S. Koziel and K. Madsen, “Space mapping and beyond: knowledgedriven microwave design optimization,” IEEE MTTS Int. Microwave Symp. Dig., 2012.
[295] Q.S. Cheng, J.W. Bandler, S. Koziel, “A space mapping schematic for fast EMbased modeling and design,” IEEE MTTS Int. Microwave Symp. Dig., 2012.
[296] S. Koziel and S. Ogurtsov, “Robust design of UWB antennas using response surface approximations and manifold mapping,” European Antenna and Propagation Conference, 2012.
[297] S. Koziel and S. Ogurtsov, “Lowcost design optimization of antennas using adjoint sensitivity,” European Antenna and Propagation Conference, 2012.
[298] S. Koziel, S. Ogurtsov, I. Couckuyt and T. Dhaene, “Accurate modeling of antennas using variablefidelity EM simulations and cokriging,” European Antenna and Propagation Conference, 2012.
[299] J.P. Jacobs, S. Koziel and S. Ogurtsov, “Lowcost variable fidelity Bayesian support vector machine modeling of planar slot antennas,” European Antenna and Propagation Conference, 2012.
[300] Y. Zhang, S. Hosder, L. Leifsson, and S. Koziel, “Robust airfoil optimization under inherent and modelform uncertainties using stochastic expansions,” 50th AIAA Aerospace Sciences Meeting, Nashville, Tennessee, January 912, 2012.
[301] L. Leifsson, and S. Koziel “Lowcost design of transonic airfoils using variablefidelity surrogates,” 50th AIAA Aerospace Sciences Meeting, Nashville, Tennessee, January 912, 2012.
[302] S. Koziel and S. Ogurtsov, “Antenna design through variablefidelity simulationdriven optimization,” Loughborough Antennas & Propagation Conference, LAPC 2011, 2011.
[303] S. Koziel and S. Ogurtsov, “Rapid optimization of dielectric resonator antennas using surrogate models,” Loughborough Antennas & Propagation Conference, LAPC 2011, 2011.
[304] J. P. Jacobs, S. Ogurtsov, and S. Koziel, “Efficient Gaussian process modelling and optimization of slot antennas using a multifidelity approach for training data reduction,” Loughborough Antennas & Propagation Conference, LAPC 2011, 2011.
[305] S. Koziel, S. Ogurtsov, and L. Leifsson, “Design of dielectric resonator antennas using surrogatebased optimization and electromagnetic models,” Int. Conf. Simulation and Modeling Methodologies, Technologies and Appl., SIMULTECH 2011, Noordwijkerhout, The Netherlands, July 2931, pp. 439448, 2011.
[306] M. Priess, T. Slawig, and S. Koziel, “Improved surrogatebased optimization of climate model parameters using response correction,” Int. Conf. Simulation and Modeling Methodologies, Technologies and Appl., SIMULTECH 2011, Noordwijkerhout, The Netherlands, July 2931, pp. 449457, 2011.
[307] S. Koziel, L. Leifsson, and S. Ogurtsov, “Transonic airfoil design by the inverse method using variablefidelity modelling,” Int. Conf. Simulation and Modeling Methodologies, Technologies and Appl., SIMULTECH 2011, Noordwijkerhout, The Netherlands, July 2931, pp. 474482, 2011.
[308] L. Leifsson, S. Koziel, and S. Ogurtsov, “Multifidelity design optimization of axisymmetric bodies in incompressible flow,” Int. Conf. Simulation and Modeling Methodologies, Technologies and Appl., SIMULTECH 2011, Noordwijkerhout, The Netherlands, July 2931, pp. 465473, 2011.
[309] S. Koziel, Q.S. Cheng, and J.W. Bandler, “Comparative study of spacemappingbased optimization techniques for microwave design,” IEEE European Microwave Integrated Circuits Conference, Manchester, Oct. 914, pp. 422425, 2011.
[310] I. Couckuyt, S. Koziel, and T. Dhaene, “Kriging, cokriging and space mapping for microwave circuit modeling,” IEEE European Microwave Conference, Manchester, Oct. 914, pp. 444447, 2011.
[311] S. Koziel and S. Ogurtsov “Microwave design optimization using local response surface approximations and variablefidelity electromagnetic models,” IEEE European Microwave Conference, Manchester, Oct. 914, pp. 448451, 2011.
[312] S. Koziel and S. Ogurtsov, “Fast design of UWB antennas using electromagnetic models,” IEEEAPS Topical Conference on Antennas and Propagation in Wireless Communications (APWC 2011), 2011.
[313] S. Koziel and S. Ogurtsov, “Design of dielectric resonator antennas using surrogate optimization,” International Conference on Electromagnetics in Advanced Applications (ICEAA 2011), 2011.
[314] S. Koziel and S. Ogurtsov, “Coarse discretization EM models for design of SIC and planar transitions,” International Conference on Electromagnetics in Advanced Applications (ICEAA 2011), 2011.
[315] S. Koziel, S. Ogurtsov, and M.H. Bakr, “Antenna modeling using spacemapping corrected Cauchyapproximation surrogates,” IEEE Int. Symp. Antennas Prop., Spokane, WA, July 38, pp. 31663169, 2011.
[316] S. Koziel and S. Ogurtsov, “Improved variablefidelity optimization algorithm for simulationdriven design of antennas,” IEEE Int. Symp. Antennas Prop., Spokane, WA, July 38, pp. 24192422, 2011.
[317] S. Koziel and S. Ogurtsov, “Fast simulationdriven design of antennas using shapepreserving response prediction,” IEEE Int. Symp. Antennas Prop., Spokane, WA, July 38, pp. 13381341, 2011.
[318] S. Koziel and S. Ogurtsov, “Bandwidth enhanced design of dielectric resonator antennas using surrogatebased optimization,” IEEE Int. Symp. Antennas Prop., Spokane, WA, July 38, pp., 2011.
[319] S. Koziel, “Robust optimization of microwave structures using cosimulationbased surrogate models,” IEEE Int. Symp. Antennas Prop., Spokane, WA, July 38, pp. 29242927, 2011.
[320] S. Koziel and S. Ogurtsov, “Computationally efficient simulationdriven antenna design using coarsediscretization electromagnetic models,” IEEE Int. Symp. Antennas Prop., Spokane, WA, July 38, pp. 29282931, 2011.
[321] S. Koziel and L. Leifsson, “Transonic airfoil shape optimization using variableresolution models and pressure distribution alignment,” AIAA Applied Aerodynamic Conference, Honolulu, HI, June 2730, 2011, AIAA20113177.
[322] X.S. Yang, S. Koziel, and L. Leifsson, “Computational optimization, modelling and simulation: recent advances and overview,” Int. Conf. Comp. Science, ICCS 2011, Singapore, June 13, pp. 12301233, 2011.
[323] S. Koziel, S. Ogurtsov, and L. Leifsson, “Variablefidelity simulationdriven design optimization of microwave structures,” Int. Conf. Comp. Science, ICCS 2011, Singapore, June 13, pp. 12521261, 2011.
[324] L. Leifsson, S. Koziel, and S. Ogurtsov, “Inverse design of transonic airfoils using variableresolution modeling and pressure distribution alignment,” Int. Conf. Comp. Science, ICCS 2011, Singapore, June 13, pp. 12341243, 2011.
[325] S. Koziel, “On space mapping optimization with coarselydiscretized EM coarse models,” IEEE MTTS Int. Microwave Symp. Dig., 2011.
[326] S. Koziel, “Lowcost modeling of microwave structures using shapepreserving response prediction,” IEEE MTTS Int. Microwave Symp. Dig., 2011.
[327] J.W. Bandler, Q.S. Cheng, N.K. Nikolova, M.H. Bakr, and S. Koziel, “Electromagneticsbased CAD and optimization of microwave circuits exploiting timedomain techniques,” IEEE MTTS Int. Microwave Symp. Dig., 2011.
[328] S. Ogurtsov and S. Koziel, “Simulationdriven design of dielectric resonator antenna with reduced board noise emission,” IEEE MTTS Int. Microwave Symp. Dig., 2011.
[329] Q.S. Cheng, J.W. Bandler, N.K. Nikolova, and S. Koziel, “Fast space mapping modeling with adjoint sensitivity,” IEEE MTTS Int. Microwave Symp. Dig., 2011.
[330] S. Ogurtsov and S. Koziel, “Optimization of UWB planar antennas using adaptive design specifications,” European Conference on Antennas and Propagation, Rome, Italy, pp. 22162219, 2011.
[331] S. Koziel, J.W. Bandler, and Q.S. Cheng, “Tuning space mapping for microwave design optimization,” International Review of Progress in Applied Computational Electromagnetics, Williamsburg, VA, USA, pp. 381386, 2011.
[332] S. Ogurtsov and S. Koziel, “Design optimization of a dielectric ring resonator antenna for matched operation in two installation scenarios,” International Review of Progress in Applied Computational Electromagnetics, Williamsburg, VA, USA, pp. 424428, 2011.
[333] S. Koziel, “Derivativefree design optimization of sonnetsimulated structures using shapepreserving response prediction and space mapping,” International Review of Progress in Applied Computational Electromagnetics, Williamsburg, VA, USA, pp. 375380, 2011.
[334] S. Koziel, “Response correction techniques for microwave design optimization,” International Review of Progress in Applied Computational Electromagnetics, Williamsburg, VA, USA, pp. 576581, 2011.
[335] S. Koziel, “Adaptive design specifications and coarselydiscretized EM models for rapid optimization of microwave structures with FEKO,” International Review of Progress in Applied Computational Electromagnetics, Williamsburg, VA, USA, pp. 279284, 2011.
[336] S. Ogurtsov and S. Koziel, “Design of microstrip to substrate integrated waveguide transitions with enhanced bandwidth using protruding vias and EMdriven optimization,” International Review of Progress in Applied Computational Electromagnetics, Williamsburg, VA, USA, pp. 9196, 2011.
[337] S. Koziel and S. Ogurtsov, “Simulationdriven design of microstriptoCPW transitions using variablefidelity EM models,” International Review of Progress in Applied Computational Electromagnetics, Williamsburg, VA, USA, pp. 582587, 2011.
[338] M. Ravan, R.K. Amineh, S. Koziel, N.K. Nikolova, and J.P. Reilly, “Estimation of multiple surface cracks parameters using MFL testing,” XX URSI Commission B International Symposium on Electromagnetic Theory (EMTS 2010), Berlin, August 1619, pp. 891894, 2010.
[339] S. Koziel and L. Leifsson, “Multifidelity highlift aerodynamic optimization of singleelement airfoils,” Int. Conf. Engineering Optimization, Lisbon, Sept. 69, 2010.
[340] S. Koziel, S. Ogurtsov, and L. Leifsson, “Computationally efficient simulationdriven design optimization of microwave structures,” Int. Conf. Engineering Optimization, Lisbon, Sept. 69, 2010.
[341] S. Koziel, J.W. Bandler, and Q.S. Cheng, “Design optimization of microwave circuits through fast embedded tuning space mapping,” European Microwave Conference, Paris, Sept. 26 – Oct. 1, pp. 11861189, 2010.
[342] S. Koziel and D. Echeverría Ciaurri, “Reliable simulationdriven microwave design optimization using manifold mapping,” European Microwave Conference, Paris, Sept. 26 – Oct. 1, pp. 624627, 2010.
[343] X.S. Yang, S. Koziel, “Computational optimization, modeling and simulation – a paradigm shift,” Int. Conf. Computational Science, Amsterdam, May 31 – June 2, Procedia Computer Science, vo. 1, no. 1, pp. 12911294, 2010.
[344] S. Koziel, “Space mapping with cosimulation coarse model for accurate modeling of microwave structures,” IEEE Int. Symp. Antennas Prop., Toronto, Canada, 2010.
[345] S. Koziel, “Efficient optimization of microwave structures through design specifications adaptation,” IEEE Int. Symp. Antennas Prop., Toronto, Canada, 2010.
[346] S. Koziel, “Constrained space mapping for design optimization of microwave circuits,” IEEE Int. Symp. Antennas Prop., Toronto, Canada, 2010.
[347] S. Koziel, S. Ogurtsov, and M.H. Bakr, “Efficient design optimization of UWB antennas using Cauchy approximation and space mapping,” IEEE Int. Symp. Antennas Prop., Toronto, Canada, 2010.
[348] S. Koziel and M.H. Bakr, “Multifidelity optimization of microwave structures using loworder local Cauchyapproximation surrogates,” Int. Symp. Antenna Technology and Applied Electromagnetics, ANTEM 2010, Ottawa, Canada, 2010.
[349] S. Koziel, “Improved microwave circuit design using multipointresponsecorrection space mapping and trust regions,” Int. Symp. Antenna Technology and Applied Electromagnetics, ANTEM 2010, Ottawa, Canada, 2010.
[350] L. Leifsson and S. Koziel, “Multifidelity design optimization of transonic airfoils using shapepreserving response prediction,” Int. Conf. Computational Science, Amsterdam, May 31 – June 2, Procedia Computer Science, vo. 1, no. 1, pp. 13051314, 2010.
[351] S. Koziel, J.W. Bandler, and Q.S. Cheng, “Adaptively constrained parameter extraction for robust space mapping optimization of microwave circuits,” IEEE MTTS Int. Microwave Symp. Dig, Anaheim, CA, 2010, pp. 205208.
[352] Q.S. Cheng, J.W. Bandler, and S. Koziel, “Response corrected tuning space mapping for yield estimation and design centering”, IEEE MTTS Int. Microwave Symp. Dig, Anaheim, CA, 2010, pp. 193196.
[353] S. Koziel and S. Ogurtsov, “Robust multifidelity simulationdriven design optimization of microwave structures,” IEEE MTTS Int. Microwave Symp. Dig, Anaheim, CA, 2010, pp. 201204.
[354] Q.J. Zhang, J.W. Bandler, S. Koziel, H. Kabir, and L. Zhang, “ANN and space mapping for microwave modelling and optimization,” IEEE MTTS Int. Microwave Symp. Dig, Anaheim, CA, 2010, pp. 980983.
[355] S. Koziel, “Shapepreserving response prediction for microwave circuit modeling,” IEEE MTTS Int. Microwave Symp. Dig, Anaheim, CA, 2010, pp. 16601663.
[356] S. Koziel and J.W. Bandler, “Accurate modeling of microwave devices using space mapping and kriging,” International Review of Progress in Applied Computational Electromagnetics, April 2629, Tampere, Finland, 2010, pp. 902907.
[357] S. Koziel, “Multifidelity multigrid design optimization of planar microwave structures with Sonnet,” International Review of Progress in Applied Computational Electromagnetics, April 2629, Tampere, Finland, 2010, pp. 719724.
[358] S. Ogurtsov, S. Koziel, and J.E. RayasSánchez, “Design optimization of a broadband microstriptoSIW transition using surrogate modeling and adaptive design specifications,” International Review of Progress in Applied Computational Electromagnetics, April 2629, Tampere, Finland, 2010, pp. 878883.
[359] S. Koziel, S. Ogurtsov, M.H. Bakr, and G.S.A. Shaker, “Cauchy approximation and coarsemesh EM simulation for multifidelity optimization of microwave structures,” International Review of Progress in Applied Computational Electromagnetics, April 2629, Tampere, Finland, 2010, pp. 884889.
[360] S. Koziel and J.W. Bandler, “Cosimulation based tuning space mapping with FEKO for computationally efficient optimization of microwave structures,” International Review of Progress in Applied Computational Electromagnetics, April 2629, Tampere, Finland, 2010, pp. 4146.
[361] S. Koziel, “Rapid optimization of microwave structures with FEKO using shapepreserving response prediction,” International Review of Progress in Applied Computational Electromagnetics, April 2629, Tampere, Finland, 2010, pp. 3540.
[362] S. Ogurtsov and S. Koziel, “Rapid surrogatebased optimization of UWB planar antennas,” European Conference on Antennas and Propagation, April 1216, Barcelona, Spain, 2010.
[363] S. Koziel and S. Ogurtsov, “Numerically efficient design optimization of a printed 2.45 GHz Yagi antenna,” European Conference on Antennas and Propagation, April 1216, Barcelona, Spain, 2010.
[364] S. Koziel, “Surrogatebased optimization of microwave structures using space mapping and kriging,” European Microwave Conference, Sep. 28 – Oct. 2, Rome, Italy, pp. 10621065, 2009.
[365] R. Piotrowski, S. Szczepanski, and S. Koziel, “Hardware implementation of digital image stabilization using optical flow algorithm and FPGA technology,” 8^{th} National Conference on Electronics (KKE), June 710, Koszalin, Poland, pp. 414419, 2009.
[366] S. Koziel and J.W. Bandler, “MultiFidelity Space Mapping Modeling of Microwave Devices with Double Coarse Model Processing and Functional Approximation,” IEEE MTTS Int. Microwave Symp. Dig, Boston, MA, pp. 969972, 2009.
[367] Q.S. Cheng, J.W. Bandler, and S. Koziel, “Tuning Space Mapping Optimization Exploiting Embedded Surrogate Elements,” IEEE MTTS Int. Microwave Symp. Dig, Boston, MA, pp. 12571260, 2009.
[368] S. Koziel, J.W. Bandler, and Q.S. Cheng, “TrustRegionBased Convergence Safeguards for Space Mapping Design Optimization of Microwave Circuits,” IEEE MTTS Int. Microwave Symp. Dig, Boston, MA, pp. 12611264, 2009.
[369] S. Koziel, “Efficient optimization of microwave circuits using shapepreserving response prediction,” IEEE MTTS Int. Microwave Symp. Dig, Boston, MA, pp. 15691572, 2009.
[370] S. Koziel, Q.S. Cheng, and J.W. Bandler, “Microwave design optimization using implicit space mapping with adaptive selection of preassigned parameters,” International Review of Progress in Applied Computational Electromagnetics, ACES 2009, March 812, Monterey, CA, pp. 5964, 2009.
[371] S. Koziel and J.W. Bandler, “Automated tuning space mapping implementation for rapid design optimization of microwave structures,” International Review of Progress in Applied Computational Electromagnetics, ACES 2009, March 812, Monterey, CA, pp. 138143, 2009.
[372] S. Koziel, “Multifidelity optimization of microwave structures with FEKO using response surface approximation and space mapping,” International Review of Progress in Applied Computational Electromagnetics, ACES 2009, March 812, Monterey, CA, pp. 347352, 2009.
[373] M. Ravan, R.K. Amineh, S. Koziel, N.K. Nikolova, and J.P. Reilly, “Threedimensional defect reconstruction from MFL signals using space mapping optimization,” International Symposium on Antenna Technology and Applied Electromagnetics and the Canadian Radio Sciences Meeting, ANTEM/URSI, Banff, AB, Canada, Feb. 1518, 2009.
[374] S. Koziel and J.W. Bandler, “Fast space mapping with variable weight coefficients for microwave device modeling,” IEEE MTTS Int. Microwave Workshop Series on Signal Integrity and HighSpeed Interconnects, Guadalajara, Mexico, Feb. 1920, 2009, pp. 7780.
[375] Q.S. Cheng, J.W. Bandler, and S. Koziel, “A simple ADS schematic for space mapping,” IEEE MTTS Int. Microwave Workshop Series on Signal Integrity and HighSpeed Interconnects, Guadalajara, Mexico, Feb. 1920, 2009, pp. 3538.
[376] S. Szczepanki, B. Pankiewicz, and S. Koziel, “Programmable linearized CMOS OTA for fully differential continuoustime filter design,” 1^{st} Int. Conf. Information Technology, May 1921, Gdansk, Poland, 2008, pp. 483488.
[377] S. Koziel and J.W. Bandler, “Space mapping algorithm with improved convergence properties for microwave optimization,” European Microwave Integrated Circuits Conference, October 2731, Amsterdam, The Netherlands, 2008, pp. 310313.
[378] S. Koziel, J.W. Bandler, and Q.S. Cheng, “Adaptive space mapping with convergence enhancement for optimization of microwave structures and devices,” IEEE MTTS Int. Microwave Symp. Dig, Atlanta, GA, 2008, pp. 987990.
[379] J. Meng, S. Koziel, J.W. Bandler, M.H. Bakr, and Q.S. Cheng, “Tuning space mapping: a novel technique for engineering design optimization,” IEEE MTTS Int. Microwave Symp. Dig, Atlanta, GA, 2008, pp. 991994.
[380] S. Koziel, and J.W. Bandler, “Space mapping with distributed fine model evaluation for optimization of microwave structures and devices,” IEEE MTTS Int. Microwave Symp. Dig, Atlanta, GA, 2008, pp. 13771380.
[381] S. Koziel, and J.W. Bandler, “Supportvectorregressionbased output spacemapping for microwave device modeling,” IEEE MTTS Int. Microwave Symp. Dig, Atlanta, GA, 2008, pp. 615618.
[382] S. Koziel and J.W. Bandler, “Coarse models for microwave design optimization with space mapping,” International Review of Progress in Applied Computational Electromagnetics, ACES 2008, March 30April 4, Niagara Falls, Canada, pp. 578583, 2008.
[383] S. Koziel and J.W. Bandler, “Space mapping optimization of microwave structures with FEKO,” International Review of Progress in Applied Computational Electromagnetics, ACES 2008, March 30April 4, Niagara Falls, Canada, pp. 320325, 2008.
[384] R.K. Amineh, S. Koziel, N.K. Nikolova, J.W. Bandler, and J.P. Reilly, “A space mapping methodology for defect characterization,” International Review of Progress in Applied Computational Electromagnetics, ACES 2008, March 30April 4, Niagara Falls, Canada, pp. 609614, 2008.
[385] S. Koziel, Q.S. Cheng, and J.W. Bandler, “Improving efficiency of space mapping optimization of microwave structures and devices”, IEEE MTTS Int. Microwave Symp. Dig, Honolulu, HI, 2007, pp. 19951998.
[386] S. Koziel and J.W. Bandler, “Microwave device modeling using spacemapping and radial basis functions”, IEEE MTTS Int. Microwave Symp. Dig, Honolulu, HI, 2007, pp. 799802.
[387] S. Koziel and J.W. Bandler, “Coarse and surrogate model assessment for engineering design optimization with space mapping”, IEEE MTTS Int. Microwave Symp. Dig, Honolulu, HI, 2007, pp. 107110.
[388] S. Koziel and J.W. Bandler, “Controlling convergence of spacemapping algorithms for engineering optimization,” Int. Symp. Signals, Systems and Electronics, URSI ISSSE 2007, Montreal, Canada, 2007, pp. 2123.
[389] S. Koziel and J.W. Bandler, “SMF: a userfriendly software engine for spacemappingbased engineering design optimization,” Int. Symp. Signals, Systems and Electronics, URSI ISSSE 2007, Montreal, Canada, 2007, pp. 157160.
[390] S. Koziel, J.W. Bandler and K. Madsen, “Space mapping optimization algorithms for engineering design,” IEEE MTTS Int. Microwave Symp. Dig, San Francisco, CA, 2006, pp. 16011604.
[391] S. Koziel and J.W. Bandler, “Spacemappingbased modeling utilizing parameter extraction with variable weight coefficients and a data base,” IEEE MTTS Int. Microwave Symp. Dig., San Francisco, CA, 2006, pp. 17631766.
[392] J. Zhu, J.W. Bandler, N.K. Nikolova and S. Koziel, “Antenna design through space mapping optimization,” IEEE MTTS Int. Microwave Symp. Dig., San Francisco, CA, 2006, pp. 16051608.
[393] J.W. Bandler, Q.S. Cheng and S. Koziel, “Implementable space mapping approach to enhancement of microwave device models,” IEEE MTTS Int. Microwave Symp. Dig., Long Beach, CA, 2005, pp. 11391146.
[394] S. Koziel, J.W. Bandler, A.S. Mohamed and K. Madsen, “Enhanced surrogate models for statistical design exploiting space mapping technology,” IEEE MTTS Int. Microwave Symp. Dig., Long Beach, CA, 2005, pp. 16091612.
[395] S. Koziel, J.W. Bandler and K. Madsen, “Towards a rigorous formulation of the space mapping technique for engineering design,” Proc. Int. Symp. Circuits, Syst., ISCAS, vol. 1, 2005, pp. 56055608.
[396] S. Koziel, “General activeRC filter model for computeraided design and optimization,” Proc. Int. Conf. Electron. Circuits, Syst., ICECS, vol. 1, 2004, pp. 4952.
[397] S. Koziel, “Noise analysis and optimization of continuoustime activeRC filters,” Proc. Int. Conf. Electron. Circuits, Syst., ICECS, vol. 1, 2004, pp. 4548.
[398] S. Koziel, A. Ramachandran, S. Szczepanski and E. SanchezSinencio, “Dynamic range, noise and linearity optimization of continuoustime OTAC filters,” Proc. Int. Conf. Electron. Circuits, Syst., ICECS, vol. 1, 2004, pp. 4144.
[399] S. Koziel, “Noise performance of continuous‑time active‑RC filters,” 3^{rd} National Conference on Electronics (KKE), vol. 1, 2004, pp. 109‑114.
[400] S. Koziel and S. Szczepanski, “Performance optimization of continuoustime OTA‑C filters,” 3^{rd} National Conference on Electronics (KKE), vol. 1, 2004, pp. 115‑120.
[401] S. Koziel, S. Szczepanski and E. Sanchez‑Sinencio, “Nonlinear distortion and noise analysis of general G_{m}‑C filters,” Proc. IEEE Int. Conf. Circuits Syst. for Communications, ICCSC, 2004.
[402] S. Koziel, “General structure of integrator‑based continuous‑time active‑RC filter and applications,” Proc. IEEE Int. Conf. Circuits Syst. for Communications, ICCSC, 2004.
[403] S. Koziel, “Noise analysis and optimization in general OTA‑C filters,” Proc. IEEE Int. Conf. Circuits Syst. for Communications, ICCSC, 2004.
[404] S. Koziel and S. Szczepanski, “Nonlinear distortion analysis and optimization of general OTA‑C filters,” Proc. 2^{nd} National Conf. Information Technologies, Gdansk, vol. 5, 2004, pp. 843‑850.
[405] S. Koziel, “Continuous‑time active‑RC filters  general model and its applications,” Proc. 2^{nd} National Conf. Information Technologies, Gdansk, vol. 5, 2004, pp. 833‑842.
[406] S. Szczepanski, S. Koziel and E. SanchezSinencio, “Linearized CMOS OTA using active‑error feedforward technique,” Proc. Int. Symp. Circuits, Syst., ISCAS, vol. 1, 2004, pp. 549552.
[407] S. Szczepanski and S. Koziel, “1.2V low‑power four‑quadrant CMOS transconductance multiplier operating in saturation region,” Proc. Int. Symp. Circuits, Syst., ISCAS, vol. 1, 2004, pp. 10161019.
[408] S. Koziel and S. Szczepanski, “Canonic structures of odd‑order elliptic G_{m}‑C filters,” Proc. Int. Conf. Electron. Circuits, Syst., ICECS, vol. 1, 2003, pp. 272275.
[409] S. Koziel and S. Szczepanski, “Tolerance analysis of continuous‑time G_{m}‑C filters,” Proc. Int. Conf. Electron. Circuits, Syst., ICECS, vol. 2, 2003, pp. 404‑407.
[410] S. Koziel and S. Szczepanski, “Algebraic model of continuous‑time G_{m}‑LC filters and applications,” Proc. Int. Conf. Electron. Circuits, Syst., ICECS, vol. 1, 2003, pp. 280‑283.
[411] S. Szczepanski, S. Koziel and R. Schaumann, “CMOS differential pair transconductor with active‑error feedback,” Proc. Int. Conf. Electron. Circuits, Syst., ICECS, vol. 1. 2003, pp. 168‑171.
[412] S. Koziel and W. Szczesniak, “High level synthesis with adaptive evolutionary algorithm for solving reliability and thermal problems in reconfigurable microelectronic systems,” Proc. 9^{th} International Workshop on Thermal Investigations of ICs and Systems, THERMINIC, 2003, pp. 79‑84.
[413] S. Koziel and S. Szczepanski, “Filtry G_{m}‑C czasu ciaglego—ogólna struktura oraz zastosowanie w zagadnieniach analizy i projektowania (Continuous‑time G_{m}‑C filters—general structure and applications in analysis and design) (in Polish),” Proc. 1^{st} National Conf. Information Technologies, Gdansk, 2003, pp. 683‑698.
[414] S. Koziel and W. Szczesniak, “Power reduction in VLSI CMOS circuits—evolutionary versus deterministic approach,” Proc. European Conf. Circuit Theory and Design, ECCTD, vol. I, 2003, pp. 26‑29.
[415] S. Koziel and S. Szczepanski, “General G_{m}‑C filters with finite‑band transconductors,” Proc. European Conf. Circuit Theory and Design, ECCTD, vol. II, 2003, pp. 293‑296.
[416] S. Koziel and S. Szczepanski, “Ogólna struktura filtrów G_{m}‑LC czasu ciaglego (General structure of G_{m}‑LC filters), (in Polish),” 2^{nd} National Conference on Electronics (KKE), vol. 1, 2003, pp. 181‑186.
[417] S. Koziel and S. Szczepanski, “Analiza tolerancji filtrów G_{m}‑C czasu ciaglego (Efficient statistical analysis of G_{m}‑C filters), (in Polish),” 2^{nd} National Conference on Electronics (KKE), vol. 1, 2003, pp. 205‑211.
[418] S. Koziel and W. Szczesniak, “Reducing average and peak temperatures of VLSI CMOS circuits by means of evolutionary algorithm to high level synthesis,” Proc. International Workshop on Thermal Investigations of ICs and Systems, THERMINIC, 2002, pp. 66‑69.
[419] S. Koziel and S. Szczepanski, “Sensitivity comparison of high‑order allpole G_{m}‑C filters in canonical structures,” Proc. Int. Conf. Electron. Circuits, Syst., ICECS, vol. I, 2002, pp. 161‑164.
[420] S. Koziel and S. Szczepanski, “Structure generation and performance comparison of canonical elliptic G_{m}‑C filters,” Proc. Int. Conf. Electron. Circuits, Syst., ICECS, vol. I, 2002, pp. 157160.
[421] S. Koziel and W. Szczesniak, “Application of adaptive evolutionary algorithm for low power design of CMOS digital circuits,” Proc. Int. Conf. Electron. Circuits, Syst., ICECS, vol. II, 2002, pp. 685688.
[422] S. Szczepanski and S. Koziel, “A 3.3V linear fully balanced CMOS operational transconductance amplifier for high‑frequency applications,” Proc. IEEE Int. Conf. Circuits Syst. for Communications, ICCSC, 2002, pp. 38‑41.
[423] S. Koziel and S. Szczepanski, “Sensitivity properties of all‑pole canonical low‑pass G_{m}‑C filters,” Proc. IEEE Int. Conf. Circuits Syst. for Communications, ICCSC, 2002, pp. 54‑57.
[424] S. Koziel and W. Szczesniak, “Application of hybrid evolutionary partitioning algorithm for heat transfer enhancement in VLSI circuits,” Proc. IEEE Int. Conf. Circuits Syst. for Communications, ICCSC, 2002, pp. 386‑389.
[425] S. Szczepanski and S. Koziel, “Four‑quadrant analogue CMOS multiplier,” (in Polish), National Conference on Electronics (KKE), vol. 1, 2002, pp. 211‑216.
[426] S. Koziel, S. Szczepanski and R. Schaumann, “Design of highly linear tunable CMOS OTA,” Proc. Int. Symp. Circuits, Syst., ISCAS, vol. III, 2002, pp. 731734.
[427] S. Koziel, S. Szczepanski and R. Schaumann, “General approach to continuous‑time G_{m}‑C filters based on matrix description,” Proc. Int. Symp. Circuits, Syst., ISCAS, vol. IV, 2002, pp. 647650.
[428] S. Koziel and S. Szczepanski, “Dynamic range comparison of voltage‑mode and current‑mode state‑space G_{m}C biquad filters,” Proc. Int. Conf. Electron. Circuits, Syst., ICECS, vol. II, 2001, pp. 819822.
[429] S. Koziel and W. Szczesniak, “The hybrid evolutionary algorithm for VLSI circuits partitioning,” Proc. 4^{th} National Conf. Evolutionary Algorithms and Global Optimization, Poland, 2000, pp. 131138.
[430] S. Koziel and W. Szczesniak, “Constrained partitioning of VLSI circuits by means of adaptive evolutionary algorithm,” Proc. of 3^{rd} National Conf. Evolutionary Algorithms and Global Optimization, Poland, 1999, pp. 183190.
[431] S. Koziel and W. Szczesniak, “Evolutionary algorithm for electronic systems partitioning and its application in VLSI design,” Proc. Int. Conf. Electron. Circuits, Syst., ICECS, 1999, pp. 14111414.
[432] S. Koziel and W. Szczesniak, “Application of evolutionary algorithms to VLSI circuits partitioning with reduction of thermal interactions between elements,” Proc. International Workshop Thermal Investigations of ICs and Systems, THERMINIC, 1999, pp. 354359.
[433] S. Koziel and W. Szczesniak, “Reduction of the length of connections between elements of VLSI circuits by proper circuit partitioning,” Proc. of the 22nd National Conference on Circuit Theory and Electronic Circuits, Poland, 1999, pp. 373378.
[434] S. Koziel, W. Kordalski and B.M. Wilamowski, “A scalable IV MOSFET model for analog/digital circuit simulation,” Proc. of the 22nd National Conference on Circuit Theory and Electronic Circuits, Poland, 1999, pp. 247252.
[435] S. Koziel and Z. Michalewicz, “A decoderbased evolutionary algorithm for constrained parameter optimization problems,” Proc. Conference on Parallel Problems Solving from Nature, 1998, pp. 231240.
[436] R. Horbowski, S. Koziel and M. Bialko, “Evolutionary algorithms and fuzzy logic in electronic circuit performance modelling,” Proc. of the 21st National Conference on Circuit Theory and Electronic Circuits, Poland, 1998, pp. 587592.
[437] S. Koziel and M. Bialko, “Multiobjective optimization of electronic circuits using evolutionary methods,” Proc. European Conf. Circuit Theory and Design, ECCTD, vol. 2, 1997, pp. 451456.
[438] W. Kordalski, S. Koziel and B.M. Wilamowski, “An analytical DC model of the non‑uniformly doped MOS transistor,” Proc. European Conf. Circuit Theory and Design, vol. 2, 1997, pp. 743748.
[439] S. Koziel, “Exploration of the feasible region edge in constrained optimization by means of evolutionary algorithms,” Proc. of 2^{nd} National Conf. Evolutionary Algorithms and Global Optimization, Poland, 1997, pp. 129136.
[440] S. Koziel and M. Bialko, “Evolutionary algorithms in multiobjective and constrained optimization of electronic circuit parameters,” Proc. Int. Conf. Electron. Circuits, Syst., ICECS, vol.3, 1997, pp. 1233‑1237.
[441] S. Koziel and W. Kordalski, “Application of genetic algorithms to fitting parameters to a unified model of the nonuniformly doped MOSFET,” Proc. of the 19th National Conference on Circuit Theory and Electronic Circuits, Poland, 1996, pp. 227232.
Conference, Workshop and Seminar Presentations
[1] S. Koziel, „Surrogateassisted multiobjective design optimization of antennas,” Invited Lecture, Southern University of Science and Technology, Shenzhen, China, July 31, 2017.
[2] S. Koziel, „Lowcost dimension scaling of highfrequency structures using inverse surrogates,” Invited Lecture, Southern University of Science and Technology, Shenzhen, China, July 31, 2017.
[3] S. Koziel, „Fast optimization and fine tuning of compact microwave structures,” Invited Lecture, Southern University of Science and Technology, Shenzhen, China, July 26, 2016.
[4] S. Koziel, „Surrogateassisted methods for solving computationally expensive engineering optimization problems,” Invited Lecture, Southern University of Science and Technology, Shenzhen, China, July 25, 2016.
[5] S. Koziel, „Strategies for solving computationally expensive engineering design optimization problems,” Keynote Lecture, Int. Conf. Comp. Science, San Diego, CA, USA, June 68, 2016.
[6] S. Koziel, “Fast surrogateassisted optimization and fine tuning of compact microwave structures,” IEEE MTTS Int. Microwave Symp. Workshop on EMBased Tuning Techniques, ComputerAided Tuning and Tuning Space Mapping (Phoenix, AZ, USA, May 22, 2015).
[7] S. Koziel, „Microwave design optimization using variablefidelity models,” Invited Lecture, Department of Aerospace Engineering, Iowa State University, USA, Dec. 4, 2014.
[8] S. Koziel and L. Leiffson, “Featurebased modeling of microwave structures” 3^{rd} Int. Workshop Advances in SimulationDriven Optimization and Modeling, Reykjavik, Iceland, August 810, 2014.
[9] L. Leiffson, E. Hermannsson, and S. Koziel, “Optimal design of trawldoors using local surrogates” 3^{rd} Int. Workshop Advances in SimulationDriven Optimization and Modeling, Reykjavik, Iceland, August 810, 2014.
[10] Y. Tesfahunegn, S. Koziel, L. Leiffson, and F. Rosa, “Optimization of gear tooth surface modifications by physicsbased surrogates” 3^{rd} Int. Workshop Advances in SimulationDriven Optimization and Modeling, Reykjavik, Iceland, August 810, 2014.
[11] S. Koziel, “VariableFidelity Microwave Modeling and Design Optimization,”IEEE MTTS Int. Microwave Symp. Workshop on Recent Advances in Space Mapping Modeling and Optimization (Tampa, FL, June 6, 2014).
[12] S. Koziel, “Knowledgedriven design optimization of expensive simulation models,” Invited talk, Middlesex University, London, UK, November 13, 2013.
[13] S. Koziel and L. Leifsson, “Shapepreserving response prediction for engineering design modeling and optimization,” 2^{nd} Int. Workshop Advances in SimulationDriven Optimization and Modeling, Reykjavik, Iceland, August 911, 2013.
[14] L. Leifsson, and S. Koziel, “Multilevel CFDbased aerodynamic optimization,” 2^{nd} Int. Workshop Advances in SimulationDriven Optimization and Modeling, Reykjavik, Iceland, August 911, 2013.
[15] S. Koziel, L. Leifsson, and Y.A. Tesfahunegn, “Knowledgebased airfoil shape optimization using space mapping,” 2^{nd} Int. Workshop Advances in SimulationDriven Optimization and Modeling, Reykjavik, Iceland, August 911, 2013.
[16] S. Koziel, S. Ogurtsov, and L. Leifsson, “Design of antenna arrays using surrogatebased optimization,” 2^{nd} Int. Workshop Advances in SimulationDriven Optimization and Modeling, Reykjavik, Iceland, August 911, 2013.
[17] O. Glubokov, and S. Koziel, “Advanced modeling of coupledresonator filters,” 2^{nd} Int. Workshop Advances in SimulationDriven Optimization and Modeling, Reykjavik, Iceland, August 911, 2013.
[18] S. Koziel, “Antenna design using variablefidelity electromagnetic simulations,” Invited Talk, Int. Workshop on Optimization and Inverse Problems in Electromagnetism, Ghent, Belgium, Sept. 19, 2012.
[19] S. Koziel, L. Leifsson, and S. Ogurtsov, “Surrogatebased microwave optimization exploiting adjoint sensitivity,” 3^{rd} Int. Workshop Surrogate Modeling and Space Mapping for Engineering Optimization, Reykjavik, August 911, 2012.
[20] S. Ogurtsov, S. Koziel, and L. Leifsson, “Lowcost EMdriven antenna design,” 3^{rd} Int. Workshop Surrogate Modeling and Space Mapping for Engineering Optimization, Reykjavik, August 911, 2012.
[21] L. Leifsson and S. Koziel, “Knowledgebased aerodynamic optimization by space mapping,” 3^{rd} Int. Workshop Surrogate Modeling and Space Mapping for Engineering Optimization, Reykjavik, August 911, 2012.
[22] Q.S. Cheng, J.W. Bandler and S. Koziel, “Tuning space mapping: the state of the art,” 3^{rd} Int. Workshop Surrogate Modeling and Space Mapping for Engineering Optimization, Reykjavik, August 911, 2012.
[23] S. Koziel, “Knowledgedriven design optimization of expensive simulation models,” Invited talk, Christian Albrechts University, Kiel, Germany, January 30, 2012.
[24] L. Leifsson and S. Koziel, “Aerodynamic shape optimization using variableresolution models”, Invited talk at the Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology (Rolla, MO, USA, October 13, 2011).
[25] L. Leifsson and S. Koziel, “Variablefidelity aerodynamic shape optimization,” Int. Workshop on Advances in SimulationDriven Optimization and Modeling (Reykjavik, Iceland, August 1314, 2011).
[26] S. Ogurtsov and S. Koziel, “Rapid surrogatebased design optimization of antennas with coarsediscretization simulations,” Int. Workshop on Advances in SimulationDriven Optimization and Modeling (Reykjavik, Iceland, August 1314, 2011).
[27] M. Priess, T. Slawig, and S. Koziel, “Surrogatebased optimization of climate model parameters,” Int. Workshop on Advances in SimulationDriven Optimization and Modeling (Reykjavik, Iceland, August 1314, 2011).
[28] S. Koziel, S. Ogurtsov and L. Leifsson, “Response correction techniques for computationally efficient simulationdriven design optimization in microwave engineering,” Int. Workshop on Advances in SimulationDriven Optimization and Modeling (Reykjavik, Iceland, August 1314, 2011).
[29] Q.S. Cheng, J.W. Bandler, N.K. Nikolova, and S. Koziel, “Simulationdriven optimization and modeling with adjoint sensitivities,” Int. Workshop on Advances in SimulationDriven Optimization and Modeling (Reykjavik, Iceland, August 1314, 2011).
[30] J.W. Bandler, Q.S. Cheng, and S. Koziel, “Exploitation of simulators and surrogates in optimizationdriven design: the art and the science,” Int. Workshop on Advances in SimulationDriven Optimization and Modeling (Reykjavik, Iceland, August 1314, 2011).
[31] S. Koziel, “Antenna design through simulationdriven optimization,” IEEE MTTS Int. Microwave Symp. Workshop on Simulation and SurrogateDriven Microwave Design Technology (Baltimore, MD, June 6, 2011).
[32] J.W. Bandler, Q.S. Cheng, and S. Koziel, “Microwave CAD using surrogate optimization and space mapping,” IEEE MTTS Int. Microwave Symp. Workshop on Simulation and SurrogateDriven Microwave Design Technology (Baltimore, MD, June 6, 2011).
[33] S. Koziel and L. Leifsson, “Variablefidelity design optimization of airfoils using surrogate modeling and shapepreserving response prediction,” Minisymposium: SurrogateBased Optimization in Engineering and Climate Science, SIAM Conference on Optimization (Darmstadt, Germany, May 2011).
[34] S. Koziel, “Simulationdriven design using variablefidelity models and applications in engineering and science,” invited lecture at National Physical Laboratory, UK, May 12, 2011.
[35] S. Koziel, “Variablefidelity simulationdriven design optimization using surrogate models” CAU Mathematical Seminar, the Christian Albrechts University, Kiel, Germany, February 25, 2011.
[36] S. Koziel, “Response correction methods for microwave design optimization,” Int. Workshop on Advances in Modeling and Optimization of HighFrequency Structures, Reykjavik, Iceland, August 2122, 2010.
[37] S. Ogurtsov and S. Koziel, “Design optimization of UWB planar antennas using EMbased surrogate models,” Int. Workshop on Advances in Modeling and Optimization of HighFrequency Structures, Reykjavik, Iceland, August 2122, 2010.
[38] J.W. Bandler, Q.S. Cheng, S. Koziel, and K. Madsen, “Space mapping: physicsdriven optimization technology for effective engineering modeling and design,” Int. Workshop on Advances in Modeling and Optimization of HighFrequency Structures, Reykjavik, Iceland, August 2122, 2010.
[39] S. Koziel, “Variablefidelity simulationdriven design optimization using surrogate models” Invited Lecture, 5^{th} Scientific Computing Seminar, the Christian Albrechts University, Kiel, Germany, June 28, 2010.
[40] S. Koziel, “Variablefidelity simulationdriven design optimization using surrogate models” Invited Lecture, Stanford University, May 24, 2010.
[41] J.W. Bandler, Q.S. Cheng, S. Koziel, and K. Madsen, “Advanced optimization techniques for modern filter design—from Newton to space mapping,” IEEE MTTS Int. Microwave Symp. Workshop on The State of Art of Microwave Filter Synthesis, Optimization and Realization (Anaheim, CA, May 23, 2010).
[42] S. Koziel and J.W. Bandler, “Coarse models and the robustness of the space mapping optimization process,” IEEE MTTS Int. Microwave Symp. Workshop on EMBased Microwave Optimization Technology: State of the Art and Applications (Boston, MA, June 12, 2009).
[43] J.W. Bandler, Q.S. Cheng, and S. Koziel, “Surrogate modeling and space mapping: the state of the art,” IEEE MTTS Int. Microwave Symp. Workshop on EMBased Microwave Optimization Technology: State of the Art and Applications (Boston, MA, June 12, 2009).
[44] J.W. Bandler, Q.S. Cheng, S. Koziel, and K. Madsen, “Rapid design with electromagnetic accuracy: space mapping and beyond,” IEEE MTTS Int. Microwave Symp. Workshop on Advances in CAD Techniques for EM Modeling and Design Optimization (Atlanta, GA, June 15, 2008).
[45] J.W. Bandler, Q.S. Cheng, S. Koziel, and K. Madsen, “Why engineering design through space mapping works: an engineer’s interpretation,” Workshop on Robust Multiobjective Design Optimization with Simulation (FraunhoferChalmers Research Centre for Industrial Mathematics, Gothenburg, Sweden, Dec. 34, 2007).
[46] J.W. Bandler, Q.S. Cheng, S. Koziel, and K. Madsen, “The art and science of space mapping,” Woudschoten Conference of the DutchFlemish Numerical Analysis Communities (Zeist, The Netherlands, Oct. 35, 2007).
[47] S. Koziel, J.W. Bandler, K. Madsen, and Q.S. Cheng, “Modeling, design, and optimization of engineering devices and systems exploiting surrogates based on space mapping,” Woudschoten Conference of the DutchFlemish Numerical Analysis Communities (Zeist, The Netherlands, Oct. 35, 2007).
[48] S. Koziel, “Space mapping for engineering design optimization,” Invited talk, (School of Science and Engineering, Reykjavík University, September 10, 2007).
[49] S. Koziel, “Space mapping for engineering design optimization,” Invited Lecture, (Department of Electronics, Carleton University, Ottawa, Canada, March 26, 2007).
[50] J.W. Bandler, Q.S. Cheng, S. Koziel, and K. Madsen, ”Engineering modeling and optimization via space mapping: from concept to practice,” Workshop on SpaceMapping and Efficient Optimization (CWI, Amsterdam, The Netherlands, Nov. 13, 2006).
[51] S. Koziel and J.W. Bandler, “SMF – software package for userfriendly space mapping optimization”, Second International Workshop on Surrogate Modeling and Space Mapping for Engineering Optimization (Technical University of Denmark, Lyngby, November 911, 2006).
[52] S. Koziel, J.W. Bandler and K. Madsen, “Coarse model quality estimation for space mapping optimization algorithms”, Second International Workshop on Surrogate Modeling and Space Mapping for Engineering Optimization (Technical University of Denmark, Lyngby, November 911, 2006).
[53] J.W. Bandler, Q.S. Cheng, S. Koziel, and K. Madsen, ”Why space mapping works?”, Second International Workshop on Surrogate Modeling and Space Mapping for Engineering Optimization (Technical University of Denmark, Lyngby, November 911, 2006).
[54] K. Madsen, J.W. Bandler and S. Koziel, “The new space mapping algorithms (since 2000)”, Second International Workshop on Surrogate Modeling and Space Mapping for Engineering Optimization (Technical University of Denmark, Lyngby, November 911, 2006).
[55] A.S. Mohamed, S. Koziel, J.W. Bandler and M.H. Bakr, “Rosenbrocklike problems: SMF versus other SBO methods”, Second International Workshop on Surrogate Modeling and Space Mapping for Engineering Optimization (Technical University of Denmark, Lyngby, November 911, 2006).
[56] S. Koziel, “Space mapping for engineering design and optimization,” Optimization Seminar Series (McMaster University, October 16, 2006).
[57] J.W. Bandler, Q.S. Cheng, and S. Koziel, “Space mapping technology for EMbased modeling and optimization: the state of the art,” Second ITESOIntel International Workshop on Signal Integrity I3WSI2006, Guadalajara, México, Oct., 2006.
[58] S. Koziel, “SMF: a software package for userfriendly space mapping optimization,” SMF Workshop (McMaster University, October 2, 2006).
[59] J.W. Bandler, Q.S. Cheng, S. Koziel and K. Madsen, “Space mapping technology: what it is and why it works,” IEEE MTTS Int. Microwave Symp. Workshop on Microwave Component Design Using Space Mapping Technology (San Francisco, CA, June, 2006).
[60] S. Koziel, J.W. Bandler and K. Madsen, “The optimization of engineering designs using space mapping,” IEEE MTTS Int. Microwave Symp. Workshop on Microwave Component Design Using Space Mapping Technology (San Francisco, CA, June, 2006).
[61] K. Madsen, J.W. Bandler and S. Koziel, “Space mapping: introduction and motivation,” IEEE MTTS Int. Microwave Symp. Workshop on Microwave Component Design Using Space Mapping Technology (San Francisco, CA, June, 2006).
[62] S. Koziel, “Space mapping optimization algorithms for engineering design: formulation and convergence results,” Joint Applied and Industrial Mathematical Sciences & Financial Mathematics Seminar (McMaster University, March 28, 2006).
[63] J.W. Bandler, Q.S. Cheng, S. Koziel, A.S. Mohamed and K. Madsen, “Automated design and optimization exploiting surrogate models and space mapping,” IEEE MTTS Int. Microwave Symp. Workshop on Advances in Automated Modeling and Microwave Design (Long Beach, CA, June 2005).
[64] J.W. Bandler, S. Koziel and K. Madsen, “Space mapping: from rigorous formulation to userfriendly software implementation,” Workshop on Electromagneticsbased Computeraided Design of Highfrequency Structures and Antennas (McMaster University, September 9, 2005).
[65] S. Koziel and J.W. Bandler, “On the convergence of space mapping optimization algorithms,” Minisymposia on Space Mapping: A KnowledgeBased Engineering Modeling and Optimization Methodology Exploiting Surrogates, SIAM Conference on Optimization (Stockholm, Sweden, May 2005).
[66] J.W. Bandler and S. Koziel, “Optimal design of highfidelity engineering device models through space mapping,” Minisymposia on Space Mapping: A KnowledgeBased Engineering Modeling and Optimization Methodology Exploiting Surrogates, SIAM Conference on Optimization (Stockholm, Sweden, May 2005).
[67] S. Koziel and W.A. Majewski, “On quantum correlations for stochastic dynamics of XXZ type,” XV Marian Smoluchowski Symposium on Statistical Physics (Zakopane, Poland, September 712, 2002).
[68] S. Koziel and W.A. Majewski, “Evolution of quantum correlations for jumptype quantum stochastic dynamics,” XIV Marian Smoluchowski Symposium on Statistical Physics (Zakopane, Poland, September 914, 2001).
Other Publications
[1] S. Koziel, Hyperbolic functional differential systems with unbounded delay, Ph.D. thesis, Faculty of Mathematics and Physics, University of Gdansk, Poland, 2003.
[2] S. Koziel, Infinite systems of differential difference equations, M.S. thesis, Institute of Mathematics, University of Gdansk, Poland, 2002.
[3] S. Koziel and W.A. Majewski, “Evolution of entanglement for spin‑flip dynamics,” LANL preprint, quant‑ph/0101033, 2001.
[4] S. Koziel, Evolutionary algorithms and their applications to optimization and modeling of analog electronic circuits, (in Polish), Ph.D. thesis, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Poland, 2000.
[5] S. Koziel, On a noncommutative quantum analog of Glauber dynamics, (in Polish), M.S. thesis, Institute of Theoretical Physics and Astrophysics, University of Gdansk, Poland, 2000.
[6] S. Koziel, Design of operational amplifiers using heuristic programming, (in Polish), M.S. thesis, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Poland, 1995.
