Department of Engineering
Dean:Dr. Ármann Gylfason
Email:ru@ru.is
Website:http://www.ru.is/tvd
TeachersView
MSc in Sustainable Energy Science - Iceland School of Energy
Semesters:4
Years:2
ETCS:120
About majorMSc í orkuvísindum er nám hannað fyrir nemendur með ólíkan bakgrunn, t.d. viðskiptafræði, raunvísindi eða félagsvísindi sem hafa áhuga á að skilja samspil tækni, hagfræði og stefnumótunar á sviði endurnýjanlegrar orku.
Learning OutcomesView
Legend
Mandatory course on majorTeaching language
Optional course on majorPrerequisites for course
Print
Vorönn/Spring 2024
More infoEnergy Study TripElectiveISE-04ECTS 3
More infoEnvironmental LawElectiveL-808-UMHRECTS 7,5
More infoPower Plant DesignElectiveSE-815-PPEECTS 6
More infoGeothermal Science IElectiveSE-829-GS1ECTS 5
More infoGeothermal Science IIElectiveSE-829-GS2ECTS 5
More infoEnergy Financial AssessmentElectiveSE-833-FA2ECTS 6
More infoEconomics of Energy MarketsElectiveSE-834-EM2ECTS 6
More infoHydro Power ManagementElectiveSE-834-HPMECTS 6
Year
1. yearPrint
SemesterSpring 2024
Level of courseN/A
Type of courseElective
PrerequisitesNo prerequisites.
ScheduleNo schedule found.
Lecturer
David Christian Finger
Content
This module will present an overview of hydropower, the components of hydropower plants and preliminary design of hydropower projects. The first half of the course will focus on fundamentals in hydropower design and discuss the main modules that a hydropower plant consists of. Students will learn to assess energy potential for hydropower projects, optimization of dams and dam types, spillway and outlet designs, and energy dissipation. Different turbine types and their application and design will be discussed. In the second half of the course the focus will shift to development challenges and economics, both for individual projects, and for the industry as a whole. Students will work towards a final project where the goal is to make a preliminary design for a real hydro power project in combination with other assignments. The course will emphasize applied learning, with hands-on exercises and a final project. Introductory lectures will provide background information, with readings outside of class to supplement and selection of homework with simple calculations. Students will select a final project to work towards the end of the semester with a final presentation and summary report.
  • Overall structure of hydropower plants
  • Energy potential of a river/catchment, influence of flow variations
  • Understanding of the design of waterways, reservoirs and dam types, outlet works, spillways, floods and turbine types
  • Understanding of environmental and social challenges
  • Influence of climate change on hydropower / water resources
  • Reservoir sedimentation, sedimentation challenges, and outlook
  • Synthesis paper of hydropower potential in a country of own choice
  • Environmental impact assessment for a given hydropower plant profile
Learning outcome - Objectives
Industry stakeholder analysis, through different stages of project development; Assessing and monitoring hydropower project risk and uncertainty Evaluate a geophysical survey design and survey results
Course assessment
Students will be evaluated based on demonstrated understanding of material through class discussions, assignments and final project report/presentation. Further defined in Learning Management System.
Reading material
No reading material found.
Teaching and learning activities
Daily lectures and individual assignments.
Language of instructionEnglish
More infoProject Management and Strategic PlanningElectiveT-803-VERKECTS 8
More infoCreating a Complete Business Plan for a Technical Idea - Entrepreneurship and the Innovation ProcessElectiveT-814-INNOECTS 8
More infoFinite Element Analysis in EngineeringElectiveT-844-FEMMECTS 8
More infoWind PowerElectiveT-863-WINDECTS 8
More infoPower System OperationElectiveT-867-POSYECTS 8
More infoStability and Control in Electric Power SystemsElectiveT-867-STABECTS 8
More infoMSc ThesisCoreT-900-MEISECTS 30
More infoMSc thesis IICoreT-901-MEI2ECTS 30
More infoExchange StudiesElectiveX-699-EXCHECTS 30
Sumar/Summer 2024
More infoEnergy Field SchoolCoreSE-801-ES1ECTS 6
More infoExchange StudiesElectiveX-699-EXCHECTS 30
Haustönn/Fall 2024
More infoSpecial Topics in Energy IElectiveSE-801-STEECTS 1
More infoEnergy TechnologyCoreSE-802-ET1ECTS 6
More infoEnergy GeologyElectiveSE-803-GE1ECTS 3
More infoEnergy EconomicsCoreSE-805-EC1ECTS 6
More infoSpecial Topics in Energy IIIElectiveSE-806-STEECTS 6
More infoGeothermal Conceptual ModelingElectiveSE-814-GCMECTS 3
More infoEnergy Markets and RegulationsElectiveSE-850-EMRECTS 3
More infoManaging Research and Development - Methods and ModelsElectiveT-814-PRODECTS 8
More infoNumerical fluid flow and heat transferElectiveT-864-NUFFECTS 8
More infoHigh Voltage EngineeringElectiveT-866-HIVOECTS 8
More infoSmart-Grid and Sustainable Power SystemsElectiveT-867-GRIDECTS 8
More infoMSc ThesisCoreT-900-MEISECTS 30
More infoMSc thesis IICoreT-901-MEI2ECTS 30
More infoExchange StudiesElectiveX-699-EXCHECTS 30
Vorönn/Spring 2025
More infoProject Management and Strategic PlanningElectiveT-803-VERKECTS 8
More infoCreating a Complete Business Plan for a Technical Idea - Entrepreneurship and the Innovation ProcessElectiveT-814-INNOECTS 8
More infoFinite Element Analysis in EngineeringElectiveT-844-FEMMECTS 8
More infoWind PowerElectiveT-863-WINDECTS 8
More infoPower System OperationElectiveT-867-POSYECTS 8
More infoStability and Control in Electric Power SystemsElectiveT-867-STABECTS 8
More infoMSc ThesisCoreT-900-MEISECTS 30
More infoMSc thesis IICoreT-901-MEI2ECTS 30